Some Identities and Recurrence Relations on the Two Variables Bernoulli, Euler and Genocchi Polynomials

被引:1
|
作者
Kurt, Veli [1 ]
Kurt, Burak [2 ]
机构
[1] Akdeniz Univ, Fac Sci, Dept Math, TR-07058 Antalya, Turkey
[2] Akdeniz Univ, Fac Educ, Dept Math, TR-07058 Antalya, Turkey
关键词
Bernoulli numbers and polynomials; Euler polynomials and numbers; Genocchi polynomials and numbers; the Stirling numbers of second kind; q-exponential functions; Q-EXTENSIONS; APOSTOL-BERNOULLI; FORMULAS;
D O I
10.2298/FIL1607757K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mahmudov in ([16], [17], [18]) introduced and investigated some q-extensions of the q-Bernoulli polynomials B-n,q((alpha)) (x,y) of order alpha, the q-Euler polynomials E-n,q((alpha)) (x, y) of order alpha and the q-Genocchi polynomials G(n,q)((alpha)) (x, y) of order alpha. In this article, we give some identities for the q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials and the recurrence relation between these polynomials. We give a different form of the analogue of the Srivastava-Pinter addition theorem.
引用
收藏
页码:1757 / 1765
页数:9
相关论文
共 50 条
  • [31] Some identities on Bernoulli and Euler polynomials arising from the orthogonality of Laguerre polynomials
    Kim, Taekyun
    Rim, Seog-Hoon
    Dolgy, D. V.
    Lee, Sang-Hun
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [32] Some identities on Bernoulli and Euler polynomials arising from the orthogonality of Laguerre polynomials
    Taekyun Kim
    Seog-Hoon Rim
    DV Dolgy
    Sang-Hun Lee
    Advances in Difference Equations, 2012
  • [33] IDENTITIES FOR THE BERNOULLI AND EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Lee, B.
    Lee, S. H.
    Rim, S-H.
    ARS COMBINATORIA, 2012, 107 : 325 - 337
  • [34] Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials
    Kim, Dae San
    Rim, Seog-Hoon
    Kim, Taekyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [35] Unification of Generating Function of the Bernoulli, Euler and Genocchi Numbers and Polynomials
    Ozden, Hacer
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1125 - 1128
  • [36] SOME IDENTITIES OF DEGENERATE GENOCCHI POLYNOMIALS
    Lim, Dongkyu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 569 - 579
  • [37] Triple convolution identities on Bernoulli polynomials and Euler polynomials
    Wang, Weiping
    Liu, Hongmei
    Jia, Cangzhi
    UTILITAS MATHEMATICA, 2016, 101 : 369 - 395
  • [38] Lacunary Recurrence Relations with Gaps of Length 8 for the Bernoulli and Euler Polynomials
    Mirzoev, K. A.
    Safonova, T. A.
    MATHEMATICAL NOTES, 2024, 115 (1-2) : 279 - 284
  • [39] Some Determinantal Expressions and Recurrence Relations of the Bernoulli Polynomials
    Qi, Feng
    Guo, Bai-Ni
    MATHEMATICS, 2016, 4 (04)
  • [40] Some Formulae for the Product of Two Bernoulli and Euler Polynomials
    Kim, D. S.
    Dolgy, D. V.
    Kim, T.
    Rim, S. -H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,