Semi-global weak stabilization of bilinear Schrodinger equations

被引:18
作者
Beauchard, Karine [1 ]
Nersesyan, Vahagn [2 ]
机构
[1] CNRS, CMLA ENS Cachan, F-94230 Cachan, France
[2] Lab Math Versailles, F-78035 Versailles, France
关键词
QUANTUM PARTICLE; LYAPUNOV CONTROL; POTENTIAL WELL; CONTROLLABILITY; SYSTEMS;
D O I
10.1016/j.crma.2010.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a linear Schrodinger equation on a bounded domain with bilinear control representing a quantum particle in an electric field (the control) Recently Nersesyan proposed explicit feedback laws and proved the existence of a sequence of times (t(n))(n is an element of N) for which the values of the solution of the closed loop system converge weakly in H(2) to the ground state Here we prove the convergence of the whole solution as t -> +infinity The proof relies on control Lyapunov functions and an adaptation of the LaSalle invariance principle to PDEs (C) 2010 Academie des sciences Published by Elsevier Masson SAS All rights reserved
引用
收藏
页码:1073 / 1078
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1969, QUELQUES METHODES RE
[2]   FEEDBACK STABILIZATION OF DISTRIBUTED SEMI-LINEAR CONTROL-SYSTEMS [J].
BALL, JM ;
SLEMROD, M .
APPLIED MATHEMATICS AND OPTIMIZATION, 1979, 5 (02) :169-179
[3]   Controllability of a quantum particle in a moving potential well [J].
Beauchard, K ;
Coron, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (02) :328-389
[4]   Implicit Lyapunov control of finite dimensional Schrodinger equations [J].
Beauchard, Karine ;
Coron, Jean Michel ;
Mirrahimi, Mazyar ;
Rouchon, Pierre .
SYSTEMS & CONTROL LETTERS, 2007, 56 (05) :388-395
[5]   Local controllability of 1D linear and nonlinear Schrodinger equations with bilinear control [J].
Beauchard, Karine ;
Laurent, Camille .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05) :520-554
[6]   PRACTICAL STABILIZATION OF A QUANTUM PARTICLE IN A ONE-DIMENSIONAL INFINITE SQUARE POTENTIAL WELL [J].
Beauchard, Karine ;
Mirrahimi, Mazyar .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) :1179-1205
[7]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[8]   Controllability of the discrete-spectrum Schrodinger equation driven by an external field [J].
Chambrion, Thomas ;
Mason, Paolo ;
Sigalotti, Mario ;
Boscain, Ugo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01) :329-349
[9]   A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws [J].
Coron, Jean-Michel ;
d'Andrea-Novel, Brigitte ;
Bastin, Georges .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (01) :2-11
[10]   Stabilization of a rotating body beam without damping [J].
Coron, JM ;
d'Andrea-Novel, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :608-618