Generalized commutators of multilinear Calderon-Zygmund type operators

被引:6
|
作者
Xue, Qingying [1 ]
Yan, Jingquan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anshan, Anhui, Peoples R China
关键词
multilinear Calderon-Zygmund operators; Commutators; Multiple weights; WEIGHTED NORM INEQUALITIES; SINGULAR-INTEGRALS; ITERATED COMMUTATORS; EXTRAPOLATION; BOUNDS;
D O I
10.2969/jmsj/06831161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an m-linear Calderon-Zygmund operator with kernel K and T* be the maximal operator of T. Let S be a finite subset of Z(+) x {1,...,m} and denote d (y) over right arrow = dy(1) ... dy(m). Define the commutator T-(b) over right arrow ,T-S, of T, and T-(b) over right arrow ,T-S* of T* by T-(b) over right arrow ,T-S ((f) over right arrow)(x) = integral(Rnm) Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(i))).K(x, y(1), ..., y(m))Pi(m)(j=1) f(j)(y(j))d (y) over right arrow and T-(b) over right arrow ,T-S* ((f) over right arrow)(x) = sup(delta>0) vertical bar integral(Sigma j=1m) vertical bar x-y(j)vertical bar(2) > delta(2) . Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(j)))K(x, y(1), ..., y(m)) Pi(m)(j=1) f(j) (y(j))d (y) over right arrow vertical bar. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for T-(b) over right arrow ,T-S and T-(b) over right arrow ,T-S* with multiple weights. These results are based on an estimate of the Fefferman-Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderon-Zygmund operators are also given.
引用
收藏
页码:1161 / 1188
页数:28
相关论文
共 50 条
  • [41] Calderon-Zygmund operators in Morrey spaces
    Rosenthal, Marcel
    Triebel, Hans
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (01): : 1 - 11
  • [42] New weighted norm inequalities for Calderon-Zygmund operators with kernels of Dini's type and their commutators
    Hu, Xi
    Zhou, Jiang
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (04):
  • [43] Θ-type Calderon-Zygmund Operators with Non-doubling Measures
    Xie, Ru-long
    Shu, Li-sheng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (02): : 263 - 280
  • [44] Calderon-Zygmund Operators and Commutators on Weak Musielak-Orlicz Hardy Spaces
    Wang, Xiao
    Sun, Wenchang
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (02)
  • [45] AP(φ) Weights, BMO(φ), and Calderon-Zygmund Operators of φ-Type
    Wu, Ruimin
    Wang, Songbai
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [46] New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory
    Lerner, Andrei K.
    Ombrosi, Sheldy
    Perez, Carlos
    Torres, Rodolfo H.
    Trujillo-Gonzalez, Rodrigo
    ADVANCES IN MATHEMATICS, 2009, 220 (04) : 1222 - 1264
  • [47] Variation of Calderon-Zygmund operators with matrix weight
    Duong, Xuan Thinh
    Li, Ji
    Yang, Dongyong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [48] Weighted norm inequalities for multilinear strongly singular Calderon-Zygmund operators on RD-spaces
    Li, Wei
    Wu, Lian
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (02) : 657 - 680
  • [49] WEIGHTED WEAK TYPE ENDPOINT ESTIMATES FOR THE COMPOSITIONS OF CALDERON-ZYGMUND OPERATORS
    Hu, Guoen
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (03) : 320 - 339
  • [50] Weak type Ap estimate for bilinear Calderon-Zygmund operators
    Zheng, Linfei
    STUDIA MATHEMATICA, 2024, : 179 - 190