Generalized commutators of multilinear Calderon-Zygmund type operators

被引:6
|
作者
Xue, Qingying [1 ]
Yan, Jingquan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anshan, Anhui, Peoples R China
关键词
multilinear Calderon-Zygmund operators; Commutators; Multiple weights; WEIGHTED NORM INEQUALITIES; SINGULAR-INTEGRALS; ITERATED COMMUTATORS; EXTRAPOLATION; BOUNDS;
D O I
10.2969/jmsj/06831161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an m-linear Calderon-Zygmund operator with kernel K and T* be the maximal operator of T. Let S be a finite subset of Z(+) x {1,...,m} and denote d (y) over right arrow = dy(1) ... dy(m). Define the commutator T-(b) over right arrow ,T-S, of T, and T-(b) over right arrow ,T-S* of T* by T-(b) over right arrow ,T-S ((f) over right arrow)(x) = integral(Rnm) Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(i))).K(x, y(1), ..., y(m))Pi(m)(j=1) f(j)(y(j))d (y) over right arrow and T-(b) over right arrow ,T-S* ((f) over right arrow)(x) = sup(delta>0) vertical bar integral(Sigma j=1m) vertical bar x-y(j)vertical bar(2) > delta(2) . Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(j)))K(x, y(1), ..., y(m)) Pi(m)(j=1) f(j) (y(j))d (y) over right arrow vertical bar. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for T-(b) over right arrow ,T-S and T-(b) over right arrow ,T-S* with multiple weights. These results are based on an estimate of the Fefferman-Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderon-Zygmund operators are also given.
引用
收藏
页码:1161 / 1188
页数:28
相关论文
共 50 条
  • [31] Product Generalized Local Morrey Spaces and Commutators of Multi-Sublinear Operators Generated by Multilinear Calderon-Zygmund Operators and Local Campanato Functions
    Gurbuz, Ferit
    FILOMAT, 2021, 35 (09) : 2849 - 2868
  • [32] Maximal operator for multilinear Calderon-Zygmund singular integral operators on weighted Hardy spaces
    Li, Wenjuan
    Xue, Qingying
    Yabuta, Kozo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 384 - 392
  • [33] TWO WEIGHT INEQUALITIES FOR ITERATED COMMUTATORS WITH CALDERON-ZYGMUND OPERATORS
    Holmes, Irina
    Wick, Brett D.
    JOURNAL OF OPERATOR THEORY, 2018, 79 (01) : 33 - 54
  • [34] Multilinear Calderon-Zygmund operators on Morrey space with non-doubling measures
    Li, Liang
    Ma, Bolin
    Zhou, Jiang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (02): : 283 - 296
  • [35] Multilinear version of reversed Holder inequality and its applications to multilinear Calderon-Zygmund operators
    Xue, Qingying
    Yan, Jingquan
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (04) : 1053 - 1069
  • [36] Sharp Weighted Bounds for Multilinear Maximal Functions and Calderon-Zygmund Operators
    Damian, Wendolin
    Lerner, Andrei K.
    Perez, Carlos
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (01) : 161 - 181
  • [37] Weighted norm inequalities for Toeplitz type operators associated to generalized Calderon-Zygmund operators
    Tang, Yongli
    Ban, Tao
    SPRINGERPLUS, 2016, 5
  • [38] Exotic Calderon-Zygmund Operators
    Hytonen, Tuomas
    Li, Kangwei
    Martikainen, Henri
    Vuorinen, Emil
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [39] Multilinear operator-valued Calderon-Zygmund theory
    Di Plinio, Francesco
    Li, Kangwei
    Martikainen, Henri
    Vuorinen, Emil
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [40] Commutators of Calderon-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrodinger operators
    Liu Yu
    Huang JiZheng
    Dong JianFeng
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (09) : 1895 - 1913