Generalized commutators of multilinear Calderon-Zygmund type operators

被引:6
|
作者
Xue, Qingying [1 ]
Yan, Jingquan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anshan, Anhui, Peoples R China
关键词
multilinear Calderon-Zygmund operators; Commutators; Multiple weights; WEIGHTED NORM INEQUALITIES; SINGULAR-INTEGRALS; ITERATED COMMUTATORS; EXTRAPOLATION; BOUNDS;
D O I
10.2969/jmsj/06831161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an m-linear Calderon-Zygmund operator with kernel K and T* be the maximal operator of T. Let S be a finite subset of Z(+) x {1,...,m} and denote d (y) over right arrow = dy(1) ... dy(m). Define the commutator T-(b) over right arrow ,T-S, of T, and T-(b) over right arrow ,T-S* of T* by T-(b) over right arrow ,T-S ((f) over right arrow)(x) = integral(Rnm) Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(i))).K(x, y(1), ..., y(m))Pi(m)(j=1) f(j)(y(j))d (y) over right arrow and T-(b) over right arrow ,T-S* ((f) over right arrow)(x) = sup(delta>0) vertical bar integral(Sigma j=1m) vertical bar x-y(j)vertical bar(2) > delta(2) . Pi((i,j)is an element of S)(b(i)(x) - b(i)(y(j)))K(x, y(1), ..., y(m)) Pi(m)(j=1) f(j) (y(j))d (y) over right arrow vertical bar. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for T-(b) over right arrow ,T-S and T-(b) over right arrow ,T-S* with multiple weights. These results are based on an estimate of the Fefferman-Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderon-Zygmund operators are also given.
引用
收藏
页码:1161 / 1188
页数:28
相关论文
共 50 条
  • [1] Continuity property for the commutators of multilinear Calderon-Zygmund operators
    Li, Wenjuan
    Xue, Qingying
    FORUM MATHEMATICUM, 2013, 25 (04) : 771 - 785
  • [2] The commutators of multilinear Calderon-Zygmund operators on weighted Hardy spaces
    Han, Yanyan
    Wen, Yongming
    Wu, Huoxiong
    Xue, Qingying
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (04) : 1259 - 1280
  • [3] Endpoint estimates for the commutators of multilinear Calderon-Zygmund operators with Dini type kernels
    Li, Zhengyang
    Xue, Qingying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [4] Iterated commutators of multilinear Calderon-Zygmund maximal operators on some function spaces
    Si, Zengyan
    Zhang, Pu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [5] COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS WITH KERNELS OF DINI'S TYPE AND APPLICATIONS
    Zhang, Pu
    Sun, Jie
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1071 - 1093
  • [6] Multilinear Calderon-Zygmund operators on weighted Hardy spaces
    Li, Wenjuan
    Xue, Qingying
    Yabuta, Kozo
    STUDIA MATHEMATICA, 2010, 199 (01) : 1 - 16
  • [7] Weighted Lipschitz estimates for commutators of multilinear Calderon-Zygmund operators with Dini type kernels
    Sun, Jie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [8] Sharp maximal estimates for multilinear commutators of multilinear strongly singular Calderon-Zygmund operators and applications
    Lin, Yan
    Lu, Guozhen
    Lu, Shanzhen
    FORUM MATHEMATICUM, 2019, 31 (01) : 1 - 18
  • [9] Multilinear Calderon-Zygmund operators with kernels of Dini's type and applications
    Lu, Guozhen
    Zhang, Pu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 92 - 117
  • [10] Weak and strong type weighted estimates for multilinear Calderon-Zygmund operators
    Li, Kangwei
    Sun, Wenchang
    ADVANCES IN MATHEMATICS, 2014, 254 : 736 - 771