3D MoS2 foam integrated with carbon paper as binder-free anode for high performance sodium-ion batteries

被引:54
作者
Zheng, Fangying [1 ,2 ]
Wei, Zeyu [2 ]
Xia, Huicong [2 ,3 ]
Tu, Yunchuan [2 ]
Meng, Xiangyu [2 ]
Zhu, Kaixin [2 ,4 ]
Zhao, Jiao [1 ]
Zhu, Yimin [1 ]
Zhang, Jianan [2 ,3 ]
Yang, Yan [1 ]
Deng, Dehui [2 ,4 ]
机构
[1] Dalian Maritime Univ, Inst Environm Remediat, Dalian 116026, Liaoning, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Liaoning, Peoples R China
[3] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Dalian Univ Technol, Zhang Dayu Sch Chem, Dalian 116024, Liaoning, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 65卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
3D MoS2 foam; Carbon paper; Binder-free electrode; High performance; Sodium-ion batteries; ENERGY-STORAGE; LITHIUM; NANOSHEETS; ELECTRODE;
D O I
10.1016/j.jechem.2021.05.021
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Molybdenum sulfide (MoS2) with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource, however, hindered by its intrinsic low conductivity and stability. Herein, MoS2 with 3D macroporous foam struc-ture and high conductivity was obtained through SiO2 templates and integrated with carbon paper (3D F-MoS2/CP). It has showed superior specific capacity (225 mA h g(-1), 0.4-3 V) and cycling stability (1000 cycles) at high rate (2000 mA g(-1)), with a low decay rate (0.033% per cycle) in sodium-ion batteries. The excellent electrochemical performance may originate from its unique integrated structure: 3D MoS2 macropores providing high surface area and abundant transfer channels while carbon paper enhancing the conductivity of MoS2 and avoiding unnecessary side reactions brought by binder addition. (c) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 46 条
  • [21] Molybdenum Disulfide/Reduced Graphene Oxide Nanocomposite with Expanded Interlayer Spacing for Sodium Ion Batteries
    Li, Jinhang
    Tao, Huachao
    Zhang, Yukun
    Yang, Xuelin
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) : A3685 - A3692
  • [22] High-quality rGO/MoS2 composite via a facile "prereduction-microwave" strategy for enhanced lithium and sodium storage
    Liu, Kangli
    Zhang, Peng
    Miao, Fujun
    Zhang, Shijie
    Zhang, Yongshang
    Cao, Guoqin
    Shao, Guosheng
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 821
  • [23] Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
    Pan, Huilin
    Hu, Yong-Sheng
    Chen, Liquan
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2338 - 2360
  • [24] Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries
    Pan, Qichang
    Zhang, Qiaobao
    Zheng, Fenghua
    Liu, Yanzhen
    Li, Youpeng
    Ou, Xing
    Xiong, Xunhui
    Yang, Chenghao
    Liu, Meilin
    [J]. ACS NANO, 2018, 12 (12) : 12578 - 12586
  • [25] Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution
    Tsai, Charlie
    Li, Hong
    Park, Sangwook
    Park, Joonsuk
    Han, Hyun Soo
    Norskov, Jens K.
    Zheng, Xiaolin
    Abild-Pedersen, Frank
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [26] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    [J]. SMALL, 2015, 11 (04) : 473 - 481
  • [27] Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles
    Wang, John
    Polleux, Julien
    Lim, James
    Dunn, Bruce
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (40) : 14925 - 14931
  • [28] Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques
    Wang, Liguang
    Wang, Jiajun
    Guo, Fangmin
    Ma, Lu
    Ren, Yang
    Wu, Tianpin
    Zuo, Pengjian
    Yin, Geping
    Wang, Jun
    [J]. NANO ENERGY, 2018, 43 : 184 - 191
  • [29] Wang QH, 2012, NAT NANOTECHNOL, V7, P699, DOI [10.1038/NNANO.2012.193, 10.1038/nnano.2012.193]
  • [30] A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries
    Wang, Xiaoya
    Hao, Hao
    Liu, Jiali
    Huang, Tao
    Yu, Aishui
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (11) : 4065 - 4069