A Comprehensive Survey on Sentiment Analysis in Twitter Data

被引:6
作者
Krishnan, Hema [1 ]
Elayidom, M. Sudheep [2 ]
Santhanakrishnan, T. [3 ]
机构
[1] Fed Inst Sci & Technol, Angamaly, Kerala, India
[2] CUSAT, Kochi, Kerala, India
[3] NPOL, Kochi, Kerala, India
关键词
Blogs; Machine Learning; Performance; Reviews; Sentiment Analysis; Twitter Data; DAILY HAPPINESS SENTIMENT; NEURAL-NETWORK; CLASSIFICATION; FRAMEWORK; TWEETS; POPULARITY; DISCOURSE; PRODUCTS; RETURNS; SYSTEM;
D O I
10.4018/IJDST.300352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The literature scrutinizes diverse techniques that are associated with sentiment analysis in Twitter data. It reviews several research papers and states the significant analysis. Initially, the analysis depicts various schemes that are contributed in different papers. Subsequently, the analysis also focuses on various features, and it also analyses the sentiment analysis in Twitter data that is exploited in each paper. Furthermore, this paper provides the detailed study regarding the performance measures and maximum performance achievements in each contribution. Finally, it extends the various research issues that can be useful for the researchers to accomplish further research on sentiment analysis in Twitter data.
引用
收藏
页数:22
相关论文
共 72 条
[1]   Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter [J].
Abid, Fazeel ;
Alam, Muhammad ;
Yasir, Muhammad ;
Li, Chen .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 95 :292-308
[2]   Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information [J].
Alharbi, Ahmed Sulaiman M. ;
de Doncker, Elise .
COGNITIVE SYSTEMS RESEARCH, 2019, 54 :50-61
[3]   Startup Initiative Response Analysis (SIRA) Framework for Analyzing Startup Initiatives on Twitter [J].
Alotaibi, Bashayer ;
Abbasi, Rabeeh Ayaz ;
Aslam, Muhammad Ahtisham ;
Saeedi, Kawther ;
Alahmadi, Dimah .
IEEE ACCESS, 2020, 8 :10718-10730
[4]   Sentiment Identification in Football-Specific Tweets [J].
Aloufi, Samah ;
El Saddik, Abdulmotaleb .
IEEE ACCESS, 2018, 6 :78609-78621
[5]   Weighted argumentation for analysis of discussions in Twitter [J].
Alsinet, Teresa ;
Argelich, Josep ;
Bejar, Ramon ;
Fernandez, Cesar ;
Mateu, Caries ;
Planes, Jordi .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 85 :21-35
[6]   The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility [J].
Behrendt, Simon ;
Schmidt, Alexander .
JOURNAL OF BANKING & FINANCE, 2018, 96 :355-367
[7]   Sarcastic sentiment detection in tweets streamed in real time: a big data approach [J].
Bharti, S. K. ;
Vachha, B. ;
Pradhan, R. K. ;
Babu, K. S. ;
Jena, S. K. .
DIGITAL COMMUNICATIONS AND NETWORKS, 2016, 2 (03) :108-121
[8]   Class Association and Attribute Relevancy Based Imputation Algorithm to Reduce Twitter Data for Optimal Sentiment Analysis [J].
Bibi, Maryum ;
Nadeem, Malik Sajjad Ahmed ;
Khan, Imtiaz Hussain ;
Shim, Seong-O ;
Khan, Ishtiaq Rasool ;
Naqvi, Uzma ;
Aziz, Wajid .
IEEE ACCESS, 2019, 7 :136535-136544
[9]   A Cooperative Binary-Clustering Framework Based on Majority Voting for Twitter Sentiment Analysis [J].
Bibi, Maryum ;
Aziz, Wajid ;
Almaraashi, Majid ;
Khan, Imtiaz Hussain ;
Nadeem, Malik Sajjad Ahmed ;
Habib, Nazneen .
IEEE ACCESS, 2020, 8 (68580-68592) :68580-68592
[10]   Multi-Class Sentiment Analysis on Twitter: Classification Performance and Challenges [J].
Bouazizi, Mondher ;
Ohtsuki, Tomoaki .
BIG DATA MINING AND ANALYTICS, 2019, 2 (03) :181-194