A positive scheme for diffusion problems on deformed meshes

被引:43
作者
Blanc, Xavier [1 ]
Labourasse, Emmanuel [2 ]
机构
[1] Univ Paris Diderot, Lab Jacques Louis Lions, Batiment Sophie Germain,5 Rue Thomas Mann, F-75205 Paris 13, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2016年 / 96卷 / 06期
关键词
Deformed mesh; finite volume; diffusion; maximum principle; numerical analysis; FINITE-VOLUME METHOD; TENSOR COEFFICIENTS; EQUATIONS; CONVERGENCE; OPERATORS; APPROXIMATION; DISCRETIZATION; RADIATION;
D O I
10.1002/zamm.201400234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present in this article a positive finite volume method for diffusion equation on deformed meshes. This method is mainly inspired from [50, 52], and uses auxiliary unknowns at the nodes of the mesh. The flux is computed so as to be a two-point nonlinear flux, giving rise to a matrix which is the transpose of an M-matrix, which ensures that the scheme is positive. A particular attention is given to the computation of the auxiliary unknowns. We propose a new strategy, which aims at providing a scheme easy to implement in a parallel domain decomposition setting. An analysis of the scheme is provided: existence of a solution for the nonlinear system is proved, and the convergence of a fixed-point strategy is studied. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:660 / 680
页数:21
相关论文
共 53 条
[1]   Convergence of a symmetric MPFA method on quadrilateral grids [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Klausen, R. A. ;
Wheeler, M. F. ;
Yotov, I. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (04) :333-345
[2]  
[Anonymous], 1983, COLLECTION MATH APPL
[3]   Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences [J].
Arbogast, T ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :828-852
[4]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[5]   On vertex reconstructions for cell-centered finite volume approximations of 2d anisotropic diffusion problems [J].
Bertolazzi, Enrico ;
Manzini, Gianmarco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (01) :1-32
[6]   A cell-centered diffusion scheme on two-dimensional unstructured meshes [J].
Breil, Jerome ;
Maire, Pierre-Henri .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) :785-823
[7]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[8]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[9]   A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension [J].
Carre, G. ;
Del Pino, S. ;
Despres, B. ;
Labourasse, E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) :5160-5183
[10]  
Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493