Prediction of causative genes in inherited retinal disorder from fundus photography and autofluorescence imaging using deep learning techniques

被引:19
作者
Fujinami-Yokokawa, Yu [1 ,2 ,3 ,4 ]
Ninomiya, Hideki [2 ]
Liu, Xiao [1 ]
Yang, Lizhu [1 ]
Pontikos, Nikolas [1 ,3 ,5 ]
Yoshitake, Kazutoshi [6 ]
Iwata, Takeshi [6 ]
Sato, Yasunori [4 ,7 ]
Hashimoto, Takeshi [4 ,8 ]
Tsunoda, Kazushige [9 ]
Miyata, Hiroaki [2 ,4 ]
Fujinami, Kaoru [1 ,3 ,5 ]
机构
[1] Natl Hosp Org Tokyo Med Ctr, Natl Inst Sensory Organs, Div Vis Res, Lab Visual Physiol, Tokyo, Japan
[2] Keio Univ, Sch Med, Dept Hlth Policy & Management, Tokyo, Japan
[3] UCL, UCL Inst Ophthalmol, London, England
[4] Keio Univ, Grad Sch Hlth Management, Tokyo, Japan
[5] Moorfields Eye Hosp, Med Retina, Div Inherited Eye Dis, London, England
[6] Natl Hosp Org Tokyo Med Ctr, Div Mol & Cellular Biol, Natl Inst Sensory Organs, Tokyo, Japan
[7] Keio Univ, Dept Prevent Med & Publ Hlth, Sch Med, Tokyo, Japan
[8] Keio Univ, Sports Med Res Ctr, Tokyo, Japan
[9] Natl Hosp Org Tokyo Med Ctr, Natl Inst Sensory Organs, Div Vis Res, Tokyo, Japan
关键词
retina; genetics; imaging; MACULAR DYSTROPHY; JAPANESE PATIENTS; DISEASE; COHORT; PROGRESSION; RETINOPATHY; PHENOTYPE; COST;
D O I
10.1136/bjophthalmol-2020-318544
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/Aims To investigate the utility of a data-driven deep learning approach in patients with inherited retinal disorder (IRD) and to predict the causative genes based on fundus photography and fundus autofluorescence (FAF) imaging. Methods Clinical and genetic data from 1302 subjects from 729 genetically confirmed families with IRD registered with the Japan Eye Genetics Consortium were reviewed. Three categories of genetic diagnosis were selected, based on the high prevalence of their causative genes: Stargardt disease (ABCA4), retinitis pigmentosa (EYS) and occult macular dystrophy (RP1L1). Fundus photographs and FAF images were cropped in a standardised manner with a macro algorithm. Images for training/testing were selected using a randomised, fourfold cross-validation method. The application program interface was established to reach the learning accuracy of concordance (target: >80%) between the genetic diagnosis and the machine diagnosis (ABCA4, EYS, RP1L1 and normal). Results A total of 417 images from 156 Japanese subjects were examined, including 115 genetically confirmed patients caused by the three prevalent causative genes and 41 normal subjects. The mean overall test accuracy for fundus photographs and FAF images was 88.2% and 81.3%, respectively. The mean overall sensitivity/specificity values for fundus photographs and FAF images were 88.3%/97.4% and 81.8%/95.5%, respectively. Conclusion A novel application of deep neural networks in the prediction of the causative IRD genes from fundus photographs and FAF, with a high prediction accuracy of over 80%, was highlighted. These achievements will extensively promote the quality of medical care by facilitating early diagnosis, especially by non-specialists, access to care, reducing the cost of referrals, and preventing unnecessary clinical and genetic testing.
引用
收藏
页码:1272 / 1279
页数:8
相关论文
共 36 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[3]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[4]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[5]   Clinical and Genetic Characteristics of East Asian Patients with Occult Macular Dystrophy (Miyake Disease) [J].
Fujinami, Kaoru ;
Yang, Lizhu ;
Joo, Kwangsic ;
Tsunoda, Kazushige ;
Kameya, Shuhei ;
Hanazono, Gen ;
Fujinami-Yokokawa, Yu ;
Arno, Gavin ;
Kondo, Mineo ;
Nakamura, Natsuko ;
Kurihara, Toshihide ;
Tsubota, Kazuo ;
Zou, Xuan ;
Li, Hui ;
Park, Kyu Hyung ;
Iwata, Takeshi ;
Miyake, Yozo ;
Woo, Se Joon ;
Sui, Ruifang .
OPHTHALMOLOGY, 2019, 126 (10) :1432-1444
[6]   Novel RP1L1 Variants and Genotype-Photoreceptor Microstructural Phenotype Associations in Cohort of Japanese Patients With Occult Macular Dystrophy [J].
Fujinami, Kaoru ;
Kameya, Shuhei ;
Kikuchi, Sachiko ;
Ueno, Shinji ;
Kondo, Mineo ;
Hayashi, Takaaki ;
Shinoda, Kei ;
Machida, Shigeki ;
Kuniyoshi, Kazuki ;
Kawamura, Yuichi ;
Akahori, Masakazu ;
Yoshitake, Kazutoshi ;
Katagiri, Satoshi ;
Nakanishi, Ayami ;
Sakuramoto, Hiroyuki ;
Ozawa, Yoko ;
Tsubota, Kazuo ;
Yamaki, Kunihiko ;
Mizota, Atsushi ;
Terasaki, Hiroko ;
Miyake, Yozo ;
Iwata, Takeshi ;
Tsunoda, Kazushige .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (11) :4837-4846
[7]   Clinical and Molecular Characteristics of Childhood-Onset Stargardt Disease [J].
Fujinami, Kaoru ;
Zernant, Jana ;
Chana, Ravinder K. ;
Wright, Genevieve A. ;
Tsunoda, Kazushige ;
Ozawa, Yoko ;
Tsubota, Kazuo ;
Robson, Anthony G. ;
Holder, Graham E. ;
Allikmets, Rando ;
Michaelides, Michel ;
Moore, Anthony T. .
OPHTHALMOLOGY, 2015, 122 (02) :326-334
[8]   A Longitudinal Study of Stargardt Disease: Quantitative Assessment of Fundus Autofluorescence, Progression, and Genotype Correlations [J].
Fujinami, Kaoru ;
Lois, Noemi ;
Mukherjee, Rajarshi ;
McBain, Vikki A. ;
Tsunoda, Kazushige ;
Tsubota, Kazuo ;
Stone, Edwin M. ;
Fitzke, Fred W. ;
Bunce, Catey ;
Moore, Anthony T. ;
Webster, Andrew R. ;
Michaelides, Michel .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (13) :8181-8190
[9]   The Clinical Effect of Homozygous ABCA4 Alleles in 18 Patients [J].
Fujinami, Kaoru ;
Sergouniotis, Panagiotis I. ;
Davidson, Alice E. ;
Mackay, Donna S. ;
Tsunoda, Kazushige ;
Tsubota, Kazuo ;
Robson, Anthony G. ;
Holder, Graham E. ;
Moore, Anthony T. ;
Michaelides, Michel ;
Webster, Andrew R. .
OPHTHALMOLOGY, 2013, 120 (11) :2324-2331
[10]   A Longitudinal Study of Stargardt Disease: Clinical and Electrophysiologic Assessment, Progression, and Genotype Correlations [J].
Fujinami, Kaoru ;
Lois, Noemi ;
Davidson, Alice E. ;
Mackay, Donna S. ;
Hogg, Chris R. ;
Stone, Edwin M. ;
Tsunoda, Kazushige ;
Tsubota, Kazuo ;
Bunce, Catey ;
Robson, Anthony G. ;
Moore, Anthony T. ;
Webster, Andrew R. ;
Holder, Graham E. ;
Michaelides, Michel .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2013, 155 (06) :1075-1088