Object based image ranking using neural networks

被引:0
作者
Karmakar, GC
Rahman, SM
Dooley, LS
机构
[1] Monash Univ, Gippsland Sch Comp & Informat Technol, Churchill, Vic 3842, Australia
[2] Minnesota State Univ, Dept Comp & Informat Sci, Mankato, MN 56001 USA
来源
COMPUTATIONAL SCIENCE -- ICCS 2001, PROCEEDINGS PT 2 | 2001年 / 2074卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper an object-based image ranking is performed using both supervised and unsupervised neural networks. The features are extracted based on the moment invariants, the run length, and a composite method. This paper also introduces a likeness parameter, namely a similarity measure using the weights of the neural networks. The experimental results show that the performance of image retrieval depends on the method of feature extraction, types of teaming, the values of the parameters of the neural networks, and the databases including query set. The best performance is achieved using supervised neural networks for internal query set.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 11 条
[1]  
CHEN C, 1997, THESIS RMIT U AUSTRA
[2]  
GUDIVADA VN, 1995, IEEE COMPUTER MA SEP, P18
[3]  
HU M, 1962, IRE T INFORMATION TH, V8
[4]  
KARMAKAR GC, 1998, P INT S AUD VID IM P, P52
[5]  
KARMAKAR GC, 1998, THESIS MONASH U AUST
[6]  
KARMAKAR GC, 1999, P INT C COMP INT MOD, P134
[7]  
RAHMAN SM, 1997, P CATA 97 12 INT C C, P110
[8]  
RIJSBERGEN VCJ, 1997, INFORMATION RETRIEVA
[9]  
Sajjanhar A, 1997, AUST COMPUT J, V29, P131
[10]  
SALTON G, 1983, INTRO MODERN INFORMA