PZT Microfibre defect structure studied by Raman spectroscopy

被引:18
作者
Kozielski, L. [1 ]
Buixaderas, E. [2 ]
Clemens, F. [3 ]
Bujakiewicz-Koronska, R. [4 ]
机构
[1] Univ Silesia, Dept Mat Sci, PL-41200 Sosnowiec, Poland
[2] Acad Sci Czech Republ, Inst Phys, Prague 18221 8, Czech Republic
[3] Lab High Performance Ceram, Swiss Fed Labs Mat Testing & Res, EMPA, CH-8600 Dubendorf, Switzerland
[4] Pedag Univ, Inst Phys, PL-30084 Krakow, Poland
关键词
PHONON;
D O I
10.1088/0022-3727/43/41/415401
中图分类号
O59 [应用物理学];
学科分类号
摘要
Raman-scattering spectroscopy on the microscale is proposed as a method to study the distribution of defects and existing vacancies in lead zirconate titanate (PZT) fibres during industrial processes to monitor the volumetric structural order within the fibre and to estimate the spatial phase transition degree from rhombohedral to tetragonal phase. PZT fibres developed in two different sintering atmospheres, PbO and a mixture of PbZrO3 and ZrO2 (PZ+Z), were studied to determine optimal conditions for the production of defect-free PZT fibres. An estimation of defect distribution along the radius of the PZT fibres is presented using Raman spectroscopy and confirmed by x-ray-diffractometry measurements. The degradation of the spatial-mechanical properties is explained by structural changes produced by electrostatic interactions between Zr and Ti ions.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Structural phase transitions between 700 and 850°C in SrZrO3 studied by Raman spectroscopy [J].
Fujimori, H ;
Kakihana, M ;
Ioku, K ;
Goto, S ;
Yoshimura, M .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2004, 112 (1304) :189-192
[2]   Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-Te chalcogenide alloys studied by Raman spectroscopy [J].
Shportko, K. ;
Revutska, L. ;
Paiuk, O. ;
Baran, J. ;
Stronski, A. ;
Gubanova, A. ;
Venger, E. .
OPTICAL MATERIALS, 2017, 73 :489-496
[3]   Raman spectroscopy on etched graphene nanoribbons [J].
Bischoff, D. ;
Guettinger, J. ;
Droescher, S. ;
Ihn, T. ;
Ensslin, K. ;
Stampfer, C. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[4]   Raman spectroscopy of colloidal semiconductor nanocrystals [J].
Boldt, Klaus .
NANO FUTURES, 2022, 6 (01)
[5]   Probing the structure of CuInS2-ZnS core-shell and similar nanocrystals by Raman spectroscopy [J].
Dzhagan, Volodymyr ;
Kempken, Bjoern ;
Valakh, Mykhailo ;
Parisi, Juergen ;
Kolny-Olesiak, Joanna ;
Zahn, Dietrich R. T. .
APPLIED SURFACE SCIENCE, 2017, 395 :24-28
[6]   Phonon Dynamics in BiFeO3 Studied by Raman Scattering [J].
Shimizu, Takao ;
Era, Takuro ;
Taniguchi, Hiroki ;
Fu, Desheng ;
Taniyama, Tomoyasu ;
Itoh, Mitsuru .
FERROELECTRICS, 2010, 403 :187-190
[7]   Raman spectroscopy of carbonaceous particles of environmental interest [J].
Ferrugiari, Anna ;
Tommasini, Matteo ;
Zerbi, Giuseppe .
JOURNAL OF RAMAN SPECTROSCOPY, 2015, 46 (12) :1215-1224
[8]   Raman spectroscopy of lithium niobite (LiNbO2) [J].
Howard, S. A. ;
Evlyukhin, E. ;
Razek, S. Abdel ;
Fajardo, G. J. Paez ;
Wahila, M. J. ;
McCrone, T. M. ;
Doolittle, W. A. ;
Lee, W. C. ;
Piper, L. F. J. .
CHEMICAL PHYSICS LETTERS, 2022, 807
[9]   Raman spectroscopy regulation in van der Waals crystals [J].
Zheng, Wei ;
Zhu, Yanming ;
Li, Fadi ;
Huang, Feng .
PHOTONICS RESEARCH, 2018, 6 (11) :991-995
[10]   Raman spectroscopy on nonstoichiometric Gd123 thin films [J].
Kakeshita, T. ;
Hirose, K. ;
Lee, S. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 463 :96-99