Robust Finite-Time Control for Autonomous Operation of an Inverter-Based Microgrid

被引:46
作者
Xu, Yinliang [1 ]
机构
[1] Sun Yat Sen Univ, SYSU CMU Joint Inst Engn, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Chattering; finite-time convergence; inverter; microgrid; robust control; DISTRIBUTED SECONDARY CONTROL; ISLANDED MICROGRIDS; CONTROL STRATEGIES; CONTROL SCHEME; AC MICROGRIDS; SYSTEM; COORDINATION; MANAGEMENT; STABILITY;
D O I
10.1109/TII.2017.2693233
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, more and more small-scale renewable generation sources based distributed generators are integrated to the existing power network through power electronic-based converters. Microgrid has been proposed as a solution to meet the challenges posed by highly intermittent renewable generations. To address the fast response and complex operating conditions of various inverters in an autonomous microgrid, this paper proposes a robust finite-time control algorithm for frequency/voltage regulation and active/reactive power control. The major advantages of the proposed control algorithm include, being robust and stable against various load disturbances, unmodeled dynamics and system parameter perturbations; enabling flexible convergence time according to user preferences and different operating conditions' requirements. The finite-time convergence of the robust control algorithm is guaranteed through rigorous analysis and the balance between control accuracy and chattering suppression is investigated. Simulation results demonstrate the effectiveness of the proposed robust finite-time control algorithm.
引用
收藏
页码:2717 / 2725
页数:9
相关论文
共 27 条
[1]   Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters [J].
Barklund, E. ;
Pogaku, Nagaraju ;
Prodanovic, Milan ;
Hernandez-Aramburo, C. ;
Green, Tim C. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (05) :2346-2352
[2]   A Multiobjective Distributed Control Framework for Islanded AC Microgrids [J].
Bidram, Ali ;
Davoudi, Ali ;
Lewis, Frank L. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (03) :1785-1798
[3]   Finite-Time Approximate Consensus and its Application to Distributed Frequency Regulation in Islanded AC Microgrids [J].
Cady, Stanton T. ;
Dominguez-Garcia, Alejandro D. ;
Hadjicostis, Christoforos N. .
2015 48TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2015, :2664-2670
[4]  
Cai H., 2016, IEEE T SMART GRID
[5]   A phase tracking system for three phase utility interface inverters [J].
Chung, SK .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2000, 15 (03) :431-438
[6]   The IEEE reliability test system - 1996 [J].
Grigg, C ;
Wong, P ;
Albrecht, P ;
Allan, R ;
Bhavaraju, M ;
Billinton, R ;
Chen, Q ;
Fong, C ;
Haddad, S ;
Kuruganty, S ;
Li, W ;
Mukerji, R ;
Patton, D ;
Rau, N ;
Reppen, D ;
Schneider, A ;
Shahidehpour, M ;
Singh, C .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (03) :1010-1018
[7]   Distributed Secondary Voltage and Frequency Restoration Control of Droop-Controlled Inverter-Based Microgrids [J].
Guo, Fanghong ;
Wen, Changyun ;
Mao, Jianfeng ;
Song, Yong-Duan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (07) :4355-4364
[8]   Impact Time and Angle Guidance With Sliding Mode Control [J].
Harl, Nathan ;
Balakrishnan, S. N. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (06) :1436-1449
[9]   Fuel consumption minimization of a microgrid [J].
Hernandez-Aramburo, CA ;
Green, TC ;
Mugniot, N .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2005, 41 (03) :673-681
[10]   Multivariable Servomechanism Controller for Autonomous Operation of a Distributed Generation Unit: Design and Performance Evaluation [J].
Karimi, Houshang ;
Davison, Edward J. ;
Iravani, Reza .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (02) :853-865