A note on binary plane partitions

被引:11
作者
Tóth, CD [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
D O I
10.1007/s00454-003-2921-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers binary space partitions (BSP for short) for disjoint line segments in the plane. The BSP for a disjoint set of objects is a scheme dividing the space recursively by hyperplanes until the resulting fragments of objects are separated. The size of a BSP is the number of resulting fragments of the objects. We show that the minimal size of a BSP for n disjoint line segments in the plane is Ohm(n log n/log log n) in the worst case.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 8 条
[1]   Binary space partitions or fat rectangles [J].
Agarwal, PK ;
Grove, EF ;
Murali, TM ;
Vitter, JS .
SIAM JOURNAL ON COMPUTING, 2000, 29 (05) :1422-1448
[2]   New results on binary space partitions in the plane [J].
deBerg, M ;
deGroot, M ;
Overmars, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (06) :317-333
[3]  
Fuchs H., 1980, Computer Graphics, V14, P124, DOI 10.1145/965105.807481
[4]   EFFICIENT BINARY SPACE PARTITIONS FOR HIDDEN-SURFACE REMOVAL AND SOLID MODELING [J].
PATERSON, MS ;
YAO, FF .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (05) :485-503
[5]   OPTIMAL BINARY SPACE PARTITIONS FOR ORTHOGONAL OBJECTS [J].
PATERSON, MS ;
YAO, FF .
JOURNAL OF ALGORITHMS, 1992, 13 (01) :99-113
[6]  
SCHUMACKER RA, 1969, AFHRLTR6914
[7]  
SUTHERLAND IE, 1984, ACM COMPUT SURV, V9, P1
[8]  
TOTH CD, IN PRESS SIAM J COMP