Deep learning for improving the spatial resolution of magnetic particle imaging

被引:47
作者
Shang, Yaxin [1 ,2 ,3 ]
Liu, Jie [1 ]
Zhang, Liwen [2 ,3 ]
Wu, Xiangjun [4 ]
Zhang, Peng [1 ]
Yin, Lin [2 ,3 ]
Hui, Hui [2 ,3 ,5 ]
Tian, Jie [2 ,3 ,4 ,6 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100069, Peoples R China
[2] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Engn Med, Beijing 100083, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[6] Jinan Univ, Zhuhai Precis Med Ctr, Zhuhai Peoples Hosp, Zhuhai 519000, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; magnetic particle imaging; spatial resolution; superparamagnetic iron oxide nanoparticles; LOW-DOSE CT; MRI; SENSITIVITY; NETWORK; MPI;
D O I
10.1088/1361-6560/ac6e24
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Magnetic particle imaging (MPI) is a new medical, non-destructive, imaging method for visualizing the spatial distribution of superparamagnetic iron oxide nanoparticles. In MPI, spatial resolution is an important indicator of efficiency; traditional techniques for improving the spatial resolution may result in higher costs, lower sensitivity, or reduced contrast. Approach. Therefore, we propose a deep-learning approach to improve the spatial resolution of MPI by fusing a dual-sampling convolutional neural network (FDS-MPI). An end-to-end model is established to generate high-spatial-resolution images from low-spatial-resolution images, avoiding the aforementioned shortcomings. Main results. We evaluate the performance of the proposed FDS-MPI model through simulation and phantom experiments. The results demonstrate that the FDS-MPI model can improve the spatial resolution by a factor of two. Significance. This significant improvement in MPI could facilitate the preclinical application of medical imaging modalities in the future.
引用
收藏
页数:14
相关论文
共 61 条
[1]  
Askin B., 2021, 2021 29th Signal Processing and Communications Applications Conference (SIU), P1, DOI [10.1109/SIU53274.2021.9477772, DOI 10.1109/SIU53274.2021.9477772]
[2]   Resolution enhancement in magnetic particle imaging via phase-weighting [J].
Bagheri, H. ;
Hayden, M. E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 498
[3]  
Baltruschat Ivo M., 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12262), P74, DOI 10.1007/978-3-030-59713-9_8
[4]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[5]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[6]   Low-dose CT image denoising using residual convolutional network with fractional TV loss [J].
Chen, Miao ;
Pu, Yi-Fei ;
Bai, Yu-Cai .
NEUROCOMPUTING, 2021, 452 :510-520
[7]   Low drive field amplitude for improved image resolution in magnetic particle imaging [J].
Croft, Laura R. ;
Goodwill, Patrick W. ;
Konkle, Justin J. ;
Arami, Hamed ;
Price, Daniel A. ;
Li, Ada X. ;
Saritas, Emine U. ;
Conolly, Steven M. .
MEDICAL PHYSICS, 2016, 43 (01) :424-435
[8]   On the effect of finite magnetic relaxation on the magnetic particle imaging performance of magnetic nanoparticles [J].
Dhavalikar, Rohan ;
Rinaldi, Carlos .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (07)
[9]  
Dittmer Soren, 2020, Machine Learning for Medical Image Reconstruction. Third International Workshop, MLMIR 2020. Held in Conjunction with MICCAI 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12450), P113, DOI 10.1007/978-3-030-61598-7_11
[10]   The Importance of Skip Connections in Biomedical Image Segmentation [J].
Drozdzal, Michal ;
Vorontsov, Eugene ;
Chartrand, Gabriel ;
Kadoury, Samuel ;
Pal, Chris .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :179-187