Sharp asymptotic behavior of solutions for cubic nonlinear Schrodinger equations with a potential

被引:54
作者
Naumkin, I. P. [1 ,2 ]
机构
[1] Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
LONG-RANGE SCATTERING; INVERSE SCATTERING; LARGE TIME; ENERGY; SPACE; OPERATORS; WAVES; LIGHT;
D O I
10.1063/1.4948743
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the cubic nonlinear Schrodinger equation with a potential. We obtain a sharp time decay for the global in time solution and we get the large time asymptotic profile of small solutions to the Cauchy problem. Published by AIP Publishing.
引用
收藏
页数:31
相关论文
共 50 条
[41]   Polynomial deceleration for a system of cubic nonlinear Schrodinger equations in one space dimension [J].
Kita, Naoyasu ;
Masaki, Satoshi ;
Segata, Jun-ichi ;
Uriya, Kota .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
[42]   The new structures of stochastic solutions for the nonlinear Schrodinger's equations [J].
Abdelrahman, Mahmoud A. E. ;
Hassan, Samia Z. ;
Alsaleh, Dana M. ;
Alomair, Reem A. .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (04) :1369-1379
[43]   Quantified hydrodynamic limits for Schrodinger-type equations without the nonlinear potential [J].
Kim, Jeongho ;
Moon, Bora .
JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (03)
[44]   Infinitely many small solutions for a modified nonlinear Schrodinger equations [J].
Zhou, Fen ;
Wu, Ke .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) :953-959
[45]   ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION [J].
Murphy, Jason ;
Pusateri, Fabio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) :2077-2102
[46]   Asymptotic behavior of solutions to nonlinear Schrödinger equations with time-dependent harmonic potentials [J].
Masaki Kawamoto ;
Ryo Muramatsu .
Journal of Evolution Equations, 2021, 21 :699-723
[47]   Breather solutions of the discrete nonlinear Schrodinger equations with unbounded potentials [J].
Zhang, Guoping .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
[48]   Global solutions for nonlinear Schrodinger equations in de Sitter spacetime [J].
Nakamura, Makoto .
ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS, 2019, 81 :311-322
[49]   Sharp criteria of blow-up solutions for the cubic nonlinear beam equation [J].
Qing, Jun ;
Zhang, Chuangyuan .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[50]   Ground state solutions of nonlinear Schrodinger equations involving the fractional p-Laplacian and potential wells [J].
Chen, Yongpeng ;
Niu, Miaomiao .
OPEN MATHEMATICS, 2022, 20 (01) :50-62