Sharp asymptotic behavior of solutions for cubic nonlinear Schrodinger equations with a potential

被引:54
作者
Naumkin, I. P. [1 ,2 ]
机构
[1] Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
LONG-RANGE SCATTERING; INVERSE SCATTERING; LARGE TIME; ENERGY; SPACE; OPERATORS; WAVES; LIGHT;
D O I
10.1063/1.4948743
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the cubic nonlinear Schrodinger equation with a potential. We obtain a sharp time decay for the global in time solution and we get the large time asymptotic profile of small solutions to the Cauchy problem. Published by AIP Publishing.
引用
收藏
页数:31
相关论文
共 50 条
[31]   On the asymptotic behavior of high order moments for a family of Schrodinger equations [J].
Tzvetkov, Nikolay ;
Visciglia, Nicola .
PORTUGALIAE MATHEMATICA, 2021, 78 (01) :101-128
[32]   Multibump solutions for discrete periodic nonlinear Schrodinger equations [J].
Ma, Shiwang ;
Wang, Zhi-Qiang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05) :1413-1442
[33]   Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrodinger Equations [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
ANNALES HENRI POINCARE, 2017, 18 (03) :1025-1054
[34]   Long time asymptotic behavior of the focusing nonlinear Schrodinger equation [J].
Borghese, Michael ;
Jenkins, Robert ;
McLaughlin, Kenneth D. T-R .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :887-920
[35]   THE NONLINEAR SCHRODINGER EQUATIONS WITH HARMONIC POTENTIAL IN MODULATION SPACES [J].
Bhimani, Divyang G. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (10) :5923-5944
[36]   Existence and multiplicity of solutions for logarithmic Schrodinger equations with potential [J].
Shuai, Wei .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
[37]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY LINEAR SCHRODINGER EQUATION WITH INVERSE SQUARE POTENTIAL [J].
Lin, Xiaoyan ;
He, Yubo ;
Tang, Xianhua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) :1547-1565
[38]   Sharp upper bound for amplitudes of hyperelliptic solutions of the focusing nonlinear Schrodinger equation [J].
Wright, Otis C., III .
NONLINEARITY, 2019, 32 (06) :1929-1966
[39]   Final State Problem for Systems of Cubic Nonlinear Schrodinger Equations in One Dimension [J].
Uriya, Kota .
ANNALES HENRI POINCARE, 2017, 18 (07) :2523-2542
[40]   Multiple solutions for singularly perturbed nonlinear magnetic Schrodinger equations [J].
Ambrosio, Vincenzo .
ASYMPTOTIC ANALYSIS, 2022, 128 (02) :239-272