Sharp asymptotic behavior of solutions for cubic nonlinear Schrodinger equations with a potential

被引:54
作者
Naumkin, I. P. [1 ,2 ]
机构
[1] Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
LONG-RANGE SCATTERING; INVERSE SCATTERING; LARGE TIME; ENERGY; SPACE; OPERATORS; WAVES; LIGHT;
D O I
10.1063/1.4948743
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the cubic nonlinear Schrodinger equation with a potential. We obtain a sharp time decay for the global in time solution and we get the large time asymptotic profile of small solutions to the Cauchy problem. Published by AIP Publishing.
引用
收藏
页数:31
相关论文
共 50 条
[1]   Asymptotic behavior for nonlinear Schrodinger equations with critical time-decaying harmonic potential [J].
Kawamoto, Masaki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 :253-267
[2]   Nonlinear Schrodinger equations with exceptional potentials [J].
Naumkin, Ivan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) :4575-4631
[3]   Asymptotic behavior of solutions to Schrodinger equations near an isolated singularity of the electromagnetic potential [J].
Felli, Veronica ;
Ferrero, Alberto ;
Terracini, Susanna .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :119-174
[4]   Asymptotic behavior of cubic defocusing Schrodinger equations on compact surfaces [J].
Cavalcanti, Marcelo M. ;
Correa, Wellington J. ;
Domingos Cavalcanti, Valeria N. ;
Astudillo Rojas, Maria R. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04)
[5]   Asymptotic behavior for the dissipative nonlinear Schrodinger equations under mass supercritical setting [J].
Hoshino, Gaku .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 6 (03)
[6]   Asymptotic behavior of ground state solutions for nonlinear Schrodinger systems [J].
Liu, Jian ;
Liu, Haidong .
APPLIED MATHEMATICS LETTERS, 2019, 91 :137-143
[7]   Existence and Asymptotic Behavior of Positive Solutions for a Class of Quasilinear Schrodinger Equations [J].
Wang, Youjun ;
Shen, Yaotian .
ADVANCED NONLINEAR STUDIES, 2018, 18 (01) :131-150
[8]   The solutions for nonlinear Schrodinger equations [J].
Ru, Shaolei ;
Chen, Jiecheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :117-129
[9]   Asyptotic behavior of solutions to nonlinear Schrodinger equations with time-dependent harmonic potentials [J].
Kawamoto, Masaki ;
Muramatsu, Ryo .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) :699-723
[10]   Stationary solutions to cubic nonlinear Schrodinger equations with quasi-periodic boundary conditions [J].
Sacchetti, Andrea .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)