Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models

被引:11
作者
Benzakoun, Joseph [1 ,2 ,3 ]
Charron, Sylvain [1 ,3 ]
Turc, Guillaume [1 ,3 ,4 ]
Hassen, Wagih Ben [1 ,2 ]
Legrand, Laurence [1 ,2 ]
Boulouis, Gregoire [1 ,2 ,3 ]
Naggara, Olivier [1 ,2 ,3 ]
Baron, Jean-Claude [1 ,3 ,4 ]
Thirion, Bertrand [5 ]
Oppenheim, Catherine [1 ,2 ,3 ]
机构
[1] INSERM, U1266, Inst Psychiat & Neurosci Paris IPNP, Paris, France
[2] GHU Paris Psychiat & Neurosci, FHU Neurovasc, Dept Neuroradiol, Paris, France
[3] Univ Paris, Fac Med, Paris, France
[4] GHU Paris Psychiat & Neurosci, FHU Neurovasc, Dept Neurol, Paris, France
[5] Univ Paris Saclay, INRIA, CEA, Palaiseau, France
关键词
MRI; biomarkers; neuroradiology; penumbra; stroke; DIFFUSION-COEFFICIENT THRESHOLD; LESION VOLUME; INFARCT CORE; VALIDATION; SELECTION; RECOMMENDATIONS; OPTIMIZATION; REGISTRATION; REVERSAL; PENUMBRA;
D O I
10.1177/0271678X211024371
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Machine Learning (ML) has been proposed for tissue fate prediction after acute ischemic stroke (AIS), with the aim to help treatment decision and patient management. We compared three different ML models to the clinical method based on diffusion-perfusion thresholding for the voxel-based prediction of final infarct, using a large MRI dataset obtained in a cohort of AIS patients prior to recanalization treatment. Baseline MRI (MRI0), including diffusion-weighted sequence (DWI) and Tmax maps from perfusion-weighted sequence, and 24-hr follow-up MRI (MRI24h) were retrospectively collected in consecutive 394 patients AIS patients (median age = 70 years; final infarct volume = 28mL). Manually segmented DWI24h lesion was considered the final infarct. Gradient Boosting, Random Forests and U-Net were trained using DWI, apparent diffusion coefficient (ADC) and Tmax maps on MRI0 as inputs to predict final infarct. Tissue outcome predictions were compared to final infarct using Dice score. Gradient Boosting had significantly better predictive performance (median [IQR] Dice Score as for median age, maybe you can replace the comma with an equal sign for consistency 0.53 [0.29-0.68]) than U-Net (0.48 [0.18-0.68]), Random Forests (0.51 [0.27-0.66]), and clinical thresholding method (0.45 [0.25-0.62]) (P < 0.001). In this benchmark of ML models for tissue outcome prediction in AIS, Gradient Boosting outperformed other ML models and clinical thresholding method and is thus promising for future decision-making.
引用
收藏
页码:3085 / 3096
页数:12
相关论文
共 49 条
  • [1] Accident Vasculaire Cerebral (AVC), 2020, HAUTE AUTORIT SANT
  • [2] Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging
    Albers, G. W.
    Marks, M. P.
    Kemp, S.
    Christensen, S.
    Tsai, J. P.
    Ortega-Gutierrez, S.
    McTaggart, R. A.
    Torbey, M. T.
    Kim-Tenser, M.
    Leslie-Mazwi, T.
    Sarraj, A.
    Kasner, S. E.
    Ansari, S. A.
    Yeatts, S. D.
    Hamilton, S.
    Mlynash, M.
    Heit, J. J.
    Zaharchuk, G.
    Kim, S.
    Carrozzella, J.
    Palesch, Y. Y.
    Demchuk, A. M.
    Bammer, R.
    Lavori, P. W.
    Broderick, J. P.
    Lansberg, M. G.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) : 708 - 718
  • [3] Ischemic Core and Hypoperfusion Volumes Predict Infarct Size in SWIFT PRIME
    Albers, Gregory W.
    Goyal, Mayank
    Jahan, Reza
    Bonafe, Alain
    Diener, Hans-Christoph
    Levy, Elad I.
    Pereira, Vitor M.
    Cognard, Christophe
    Cohen, David J.
    Hacke, Werner
    Jansen, Olav
    Jovin, Tudor G.
    Mattle, Heinrich P.
    Nogueira, Raul G.
    Siddiqui, Adnan H.
    Yavagal, Dileep R.
    Baxter, Blaise W.
    Devlin, Thomas G.
    Lopes, Demetrius K.
    Reddy, Vivek K.
    de Rochemont, Richard du Mesnil
    Singer, Oliver C.
    Bammer, Roland
    Saver, Jeffrey L.
    [J]. ANNALS OF NEUROLOGY, 2016, 79 (01) : 76 - 89
  • [4] A survey of cross-validation procedures for model selection
    Arlot, Sylvain
    Celisse, Alain
    [J]. STATISTICS SURVEYS, 2010, 4 : 40 - 79
  • [5] Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke - A systematic review
    Bandera, E
    Botteri, M
    Minelli, C
    Sutton, A
    Abrams, KR
    Latronico, N
    [J]. STROKE, 2006, 37 (05) : 1334 - 1339
  • [6] Time-Dependent Computed Tomographic Perfusion Thresholds for Patients With Acute Ischemic Stroke
    d'Esterre, Christopher D.
    Boesen, Mari E.
    Ahn, Seong Hwan
    Pordeli, Pooneh
    Najm, Mohamed
    Minhas, Priyanka
    Davari, Paniz
    Fainardi, Enrico
    Rubiera, Marta
    Khaw, Alexander V.
    Zini, Andrea
    Frayne, Richard
    Hill, Michael D.
    Demchuk, Andrew M.
    Sajobi, Tolulope T.
    Forkert, Nils D.
    Goyal, Mayank
    Lee, Ting Y.
    Menon, Bijoy K.
    [J]. STROKE, 2015, 46 (12) : 3390 - 3397
  • [7] Can DWI-ASPECTS Substitute for Lesion Volume in Acute Stroke?
    de Margerie-Mellon, Constance
    Turc, Guillaume
    Tisserand, Marie
    Naggara, Olivier
    Calvet, David
    Legrand, Laurence
    Meder, Jean-Francois
    Mas, Jean-Louis
    Baron, Jean-Claude
    Oppenheim, Catherine
    [J]. STROKE, 2013, 44 (12) : 3565 - 3567
  • [8] Dolz J., 2018, arXiv:1810.07003
  • [9] The ratio between cerebral blood flow and Tmax predicts the quality of collaterals in acute ischemic stroke
    Galinovic, Ivana
    Kochova, Elena
    Khalil, Ahmed
    Villringer, Kersten
    Piper, Sophie K.
    Fiebach, Jochen B.
    [J]. PLOS ONE, 2018, 13 (01):
  • [10] Pricing and hedging derivative securities with neural networks:: Bayesian regularization, early stopping, and bagging
    Gençay, R
    Qi, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (04): : 726 - 734