Self-organizing hierarchical mayfly optimization algorithm

被引:0
作者
Gao, Zheng-Ming [1 ]
Li, Su-Ruo [1 ]
Zhao, Juan [2 ]
Hu, Yu-Rong [3 ]
机构
[1] Jingchu Univ technol, Sch Comp Engn, Jingmen, Peoples R China
[2] Jingchu Univ technol, Sch Elect & informat Engn, Jingmen, Peoples R China
[3] Jingchu Univ technol, Dept Sci & technol, Jingmen, Peoples R China
来源
2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020) | 2020年
关键词
mayfly optimization algorithm; benchmark function; simulation experiment; Monte Carlo method; PARTICLE SWARM;
D O I
10.1109/ICBASE51474.2020.00081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the self-organizing hierarchical method was introduced to improve the capability of optimization for the newly proposed mayfly optimization (MO) algorithm. The weighted current velocities were removed from the updating equations and the re-initialization would be carried out if the updated velocities were turned to zero. Simulation experiments were carried out with the Monte Carlo method. Results verified the better performance of the improved MO algorithm than before.
引用
收藏
页码:355 / 358
页数:4
相关论文
共 11 条
[1]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[2]  
Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279
[3]   Equilibrium optimizer: A novel optimization algorithm [J].
Faramarzi, Afshin ;
Heidarinejad, Mohammad ;
Stephens, Brent ;
Mirjalili, Seyedali .
KNOWLEDGE-BASED SYSTEMS, 2020, 191
[4]  
GAO Zheng-Ming, 2020, BENCHMARK FUNCTIONS, V9, P3
[5]  
Jamil Momin, 2013, International Journal of Mathematical Modelling and Numerical Optimisation, V4, P150
[6]  
Juan Zhao, 2020, Journal of Physics: Conference Series, V1631, DOI 10.1088/1742-6596/1631/1/012071
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]   Slime mould algorithm: A new method for stochastic optimization [J].
Li, Shimin ;
Chen, Huiling ;
Wang, Mingjing ;
Heidari, Ali Asghar ;
Mirjalili, Seyedali .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 111 :300-323
[9]   Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J].
Ratnaweera, A ;
Halgamuge, SK ;
Watson, HC .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :240-255
[10]   A mayfly optimization algorithm [J].
Zervoudakis, Konstantinos ;
Tsafarakis, Stelios .
COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 145