Hamiltonian splitting for the Vlasov-Maxwell equations

被引:61
作者
Crouseilles, Nicolas [1 ,2 ]
Einkemmer, Lukas [3 ]
Faou, Erwan [4 ,5 ]
机构
[1] INRIA, F-35042 Rennes, France
[2] IRMAR, F-35042 Rennes, France
[3] Univ Innsbruck, A-6020 Innsbruck, Austria
[4] INRIA, F-35170 Bruz, France
[5] ENS Cachan Bretagne, F-35170 Bruz, France
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
Vlasov-Maxwell; Hamiltonian splitting; High order time discretization; Charge conservation; POISSON; SCHEMES; PLASMA; SYSTEM; APPROXIMATION; CONSERVATION; INTEGRATION; RECURRENCE; ALGORITHM; SOLVERS;
D O I
10.1016/j.jcp.2014.11.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new splitting is proposed for solving the Vlasov-Maxwell system. This splitting is based on a decomposition of the Hamiltonian of the Vlasov-Maxwell system and allows for the construction of arbitrary high order methods by composition (independent of the specific deterministic method used for the discretization of the phase space). Moreover, we show that for a spectral method in space this scheme satisfies Poisson's equation without explicitly solving it. Finally, we present some examples in the context of the time evolution of an electromagnetic plasma instability which emphasizes the excellent behavior of the new splitting compared to methods from the literature. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:224 / 240
页数:17
相关论文
共 36 条
[1]  
[Anonymous], 2004, SERIES PLASMA PHYS F
[2]  
[Anonymous], 2006, SPRINGER SERIES COMP
[3]  
Barthelme R., 2005, THESIS L PASTEUR U S
[4]   Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation [J].
Bowers, K. J. ;
Albright, B. J. ;
Yin, L. ;
Bergen, B. ;
Kwan, T. J. T. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[5]   Kinetic saturation of the Weibel instability in a collisionless plasma [J].
Califano, F ;
Pegoraro, F ;
Bulanov, SV ;
Mangeney, A .
PHYSICAL REVIEW E, 1998, 57 (06) :7048-7059
[6]   An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm [J].
Chen, G. ;
Chacon, L. ;
Barnes, D. C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (18) :7018-7036
[7]   INTEGRATION OF VLASOV EQUATION IN CONFIGURATION SPACE [J].
CHENG, CZ ;
KNORR, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (03) :330-351
[8]   DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS [J].
Cheng, Yingda ;
Gamba, Irene M. ;
Li, Fengyan ;
Morrison, Philip J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) :1017-1049
[9]   Study of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems [J].
Cheng, Yingda ;
Gamba, Irene M. ;
Morrison, Philip J. .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (02) :319-349
[10]   Numerical approximation of collisional plasmas by high order methods [J].
Crouseilles, N ;
Filbet, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (02) :546-572