Broadband antireflection coating for the near-infrared InAs/GaSb Type-II superlattices photodetectors by lift-off process

被引:1
作者
Jia, Qing-xuan [1 ,2 ]
Guo, Chun-yan [3 ,4 ]
Sun, Yao-yao [1 ,2 ]
Yang, Cheng-ao [1 ,2 ]
Lv, Yue-xi [1 ,2 ]
Jiang, Zhi [1 ,2 ]
Zheng, Da-Nong [1 ,2 ]
Han, Xi [1 ,2 ]
Jiang, Dong-wei [1 ,2 ]
Wang, Guo-wei [1 ,2 ]
Niu, Zhi-chuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Ultrafast Photoelect Diagnost Technol, Xian 710119, Shaanxi, Peoples R China
[4] Xi An Jiao Tong Univ, Xian 710049, Peoples R China
来源
INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES V | 2018年 / 10826卷
关键词
anti-reflection coatings; InAs/GaSb Type-II superlattices; infrared photodetectors;
D O I
10.1117/12.2509181
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Near-infrared InAs/GaSb Type-II superlattices is widely used in biomimetics, sensing, color-imaging technology and other applications. An antireflection coating(AR coating) can help it perform better, making the infrared photodetector a higher responstivity and also a higher quantum efficiency. We produce a broadband AR coating by plasma-enhanced chemical vapor deposition(PECVD) then using the lift-off technology making no damage without any change in the usual Infrared detector process flow, a 260 nm SiO2 AR coating is transform onto the surface of the infrared photodetector. After using the AR coating, the antireflection can provide up to 40% light gain, while the average reflectivity of the surface of InAs/GaSb type-II superlattice is decreased from 33% to 14%. The responsitivity is increased obviously.
引用
收藏
页数:8
相关论文
共 13 条
  • [1] Broadband anti-reflection coating using dielectric Si3N4 nanostructures. Application to amorphous-Si-H solar cells
    Elshorbagy, M. H.
    Abdel-Hady, Kamal
    Kamal, Hala
    Alda, Javier
    [J]. OPTICS COMMUNICATIONS, 2017, 390 : 130 - 136
  • [2] NIR dyes for bioimaging applications
    Escobedo, Jorge O.
    Rusin, Oleksandr
    Lim, Soojin
    Strongin, Robert M.
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (01) : 64 - 70
  • [3] Study on silicon nanopillars with ultralow broadband reflectivity via maskless reactive ion etching at room temperature
    Huang, Yi
    Yan, Wensheng
    Tan, Xinyu
    He, Lijun
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2017, 223 : 153 - 158
  • [4] Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer
    Lee, S. C.
    Plis, E.
    Krishna, S.
    Brueck, S. R. J.
    [J]. ELECTRONICS LETTERS, 2009, 45 (12) : 643 - 644
  • [5] Optical imaging in drug discovery and diagnostic applications
    Licha, K
    Olbrich, C
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2005, 57 (08) : 1087 - 1108
  • [6] Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique
    Lien, Shui-Yang
    Wuu, Dong-Sing
    Yeh, Wen-Chang
    Liu, Jun-Chin
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (16) : 2710 - 2719
  • [7] Simulation and fabrication of SiO2/graded-indexTiO2 anti reflection coating for triple-junction GaAs solar cells by using the hybrid deposition process
    Liu, Jheng-Jie
    Ho, Wen-Jeng
    Lee, Yi-Yu
    Chang, Chia-Ming
    [J]. THIN SOLID FILMS, 2014, 570 : 585 - 590
  • [8] A review of NIR dyes in cancer targeting and imaging
    Luo, Shenglin
    Zhang, Erlong
    Su, Yongping
    Cheng, Tianmin
    Shi, Chunmeng
    [J]. BIOMATERIALS, 2011, 32 (29) : 7127 - 7138
  • [9] Medhi Gautam, 2010, P SPIE INT SOC OPTIC, V8173, P730
  • [10] A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties
    Tan, Xu
    Luo, Shenglin
    Wang, Dechun
    Su, Yongping
    Cheng, Tianmin
    Shi, Chunmeng
    [J]. BIOMATERIALS, 2012, 33 (07) : 2230 - 2239