WHY SHOULD THE LITTLEWOOD-RICHARDSON RULE BE TRUE?

被引:17
|
作者
Howe, Roger [1 ]
Lee, Soo Teck [2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
关键词
Littlewood-Richardson Rule; Pieri Rule; GL(n) tensor product algebra; (GL(n); GL(m))-duality; STANDARD MONOMIAL THEORY; CLASSICAL LIE-GROUPS; TENSOR-PRODUCTS; CONVEXITY PROPERTIES; BRANCHING-RULES; HONEYCOMB MODEL; REPRESENTATIONS; EIGENVALUES; ALGEBRAS; PROOF;
D O I
10.1090/S0273-0979-2011-01358-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a proof of the Littlewood-Richardson Rule for describing tensor products of irreducible finite-dimensional representations of GL(n). The core of the argument uses classical invariant theory, especially (GL(n), GL(m))-duality. Both of the main conditions (semistandard condition, lattice permutation/Yamanouchi word condition) placed on the tableaux used to define Littlewood-Richardson coefficients have natural interpretations in the argument.
引用
收藏
页码:187 / 236
页数:50
相关论文
共 43 条
  • [31] Some unexpected properties of Littlewood-Richardson coefficients
    Pelletier, Maxime
    Ressayre, Nicolas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04): : 1 - 25
  • [32] Large Tensor Products and Littlewood-Richardson Coefficients
    Feigin, Evgeny
    JOURNAL OF LIE THEORY, 2019, 29 (04) : 927 - 940
  • [33] HOOK SCHUR FUNCTIONS FOR LITTLEWOOD-RICHARDSON COEFFICIENTS
    Shader, Chanyoung Lee
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 21 (02): : 179 - 202
  • [34] CONTINGENCY TABLES AND THE GENERALIZED LITTLEWOOD-RICHARDSON COEFFICIENTS
    Colarusso, Mark
    Erickson, William Q.
    Willenbring, Jeb F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 79 - 94
  • [35] Multiplication of Polynomials on Hermitian Symmetric spaces and Littlewood-Richardson Coefficients
    Graham, William
    Hunziker, Markus
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (02): : 351 - 372
  • [36] RSK Type Correspondence of Pictures and Littlewood-Richardson Crystals
    Nakashima, Toshiki
    Shimojo, Miki
    TOKYO JOURNAL OF MATHEMATICS, 2013, 36 (01) : 113 - 130
  • [37] Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients
    Fulton, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 319 (1-3) : 23 - 36
  • [38] NUMERICAL SCHUBERT CALCULUS VIA THE LITTLEWOOD-RICHARDSON HOMOTOPY ALGORITHM
    Leykin, Anton
    del Campo, Abraham Martin
    Sottile, Frank
    Vakil, Ravi
    Verschelde, Jan
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1407 - 1433
  • [39] ADMISSIBLE PICTURES AND Uq(gl(m, n))-LITTLEWOOD-RICHARDSON TABLEAUX
    Jung, Ji Hye
    Kang, Seok-Jin
    Lyoo, Young-Wook
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 1169 - 1181
  • [40] Pieri and Littlewood-Richardson rules for two rows and cluster algebra structure
    Kim, Sangjib
    Yoo, Semin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 45 (03) : 887 - 909