GENERATING RELIABLE ONLINE ADAPTIVE TEMPLATES FOR VISUAL TRACKING

被引:0
作者
Guo, Jie [1 ]
Xu, Tingfa [1 ]
Jiang, Shenwang [1 ]
Shen, Ziyi [1 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Image Engn & Video Technol Lab, Beijing 100081, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
基金
中国国家自然科学基金;
关键词
Visual tracking; online adaption; Siamese network; template matching; deep learning; OBJECT TRACKING;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Online adaption of visual tracking is a significant strategy to achieve good tracking performance since the appearance of the object target varies all along with the sequence. However, directly using the tracking results of previous frames to update the model will cause drifting, resulting in tracking failure. We propose a task-guided generative adversarial network (GAN), named TGGAN, to learn the general appearance distribution that a target may undergo through a sequence. Then the online adaption is simply to select templates from the images that are generated from the ground truth template in the first frame and a set of random vectors by the generator. This strategy helps the model alleviate drifting while still obtaining adaptivity. Tracking is treated as a template matching problem under a proposed Siamese matching network structure. Experiments show the effectiveness of the proposed online adaption strategy and the Siamese matching network.
引用
收藏
页码:226 / 230
页数:5
相关论文
共 31 条
  • [1] [Anonymous], 2006, BMVC06
  • [2] [Anonymous], 2017, ARXIV170306870
  • [3] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [4] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [5] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [6] Bolme D. S., 2015, CVPR, P2544
  • [7] Chen K., 2016, ARXIV160407507
  • [8] Attentional Correlation Filter Network for Adaptive Visual Tracking
    Choi, Jongwon
    Chang, Hyung Jin
    Yun, Sangdoo
    Fischer, Tobias
    Demiris, Yiannis
    Choi, Jin Young
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4828 - 4837
  • [9] Chollet F., 2015, about us
  • [10] Learning a similarity metric discriminatively, with application to face verification
    Chopra, S
    Hadsell, R
    LeCun, Y
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 539 - 546