Matrix Krylov subspace methods for linear systems with multiple right-hand sides

被引:49
|
作者
Heyouni, M
Essai, A
机构
[1] Univ Littoral Cote Opale, Lab Math Pures & Appl Joseph Liouville, F-62228 Calais, France
[2] Univ Sci & Technol Lille, UFR IEEA M3, Lab Anal Numer & Optimisat, F-59655 Villeneuve Dascq, France
关键词
linear systems; multiple right-hand sides; matrix Krylov subspace; weighted global Arnoldi and global Hessenberg processes; matrix equations;
D O I
10.1007/s11075-005-1526-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give a result which links any global Krylov method for solving linear systems with several right-hand sides to the corresponding classical Krylov method. Then, we propose a general framework for matrix Krylov subspace methods for linear systems with multiple right-hand sides. Our approach use global projection techniques, it is based on the Global Generalized Hessenberg Process (GGHP) - which use the Frobenius scalar product and construct a basis of a matrix Krylov subspace - and on the use of a Galerkin or a minimizing norm condition. To accelerate the convergence of global methods, we will introduce weighted global methods. In these methods, the GGHP uses a different scalar product at each restart. Experimental results are presented to show the good performances of the weighted global methods.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 50 条
  • [41] A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides
    Simoncini, V
    Gallopoulos, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 66 (1-2) : 457 - 469
  • [42] The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides
    Karimi, S.
    Toutounian, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (02) : 852 - 862
  • [43] ON A CLASS OF LIMITED MEMORY PRECONDITIONERS FOR LARGE SCALE LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES
    Gratton, S.
    Sartenaer, A.
    Tshimanga, J.
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 912 - 935
  • [44] SIMPLER BLOCK GMRES FOR NONSYMMETRIC SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES
    Liu, Hualei
    Zhong, Baojiang
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 1 - 9
  • [45] A Lanczos-type method for solving nonsymmetric linear systems with multiple right-hand sides-matrix and polynomial interpretation
    Musschoot, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) : 61 - 85
  • [46] A minimal residual interpolation method for linear equations with multiple right-hand sides
    Lötstedt, P
    Nilsson, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06): : 2126 - 2144
  • [47] A DEFLATED BLOCK FLEXIBLE GMRES-DR METHOD FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES
    Meng, Jing
    Zhu, Pei-Yong
    Li, Hou-Biao
    Gu, Xian-Ming
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 478 - 496
  • [48] Fast Iterative Solution of Multiple Right-Hand Sides MoM Linear Systems on CPUs and GPUs Computers
    Carpentieri, Bruno
    Tavelli, Maurizio
    Sun, Dong-Lin
    Huang, Ting-Zhu
    Jing, Yan-Fei
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (08) : 4431 - 4444
  • [49] Parametric AE-solution sets to the parametric linear systems with multiple right-hand sides and parametric matrix equation A(p)X = B(p)
    Dehghani-Madiseh, Marzieh
    Dehghan, Mehdi
    NUMERICAL ALGORITHMS, 2016, 73 (01) : 245 - 279
  • [50] Parametric AE-solution sets to the parametric linear systems with multiple right-hand sides and parametric matrix equation A(p)X = B(p)
    Marzieh Dehghani-Madiseh
    Mehdi Dehghan
    Numerical Algorithms, 2016, 73 : 245 - 279