Matrix Krylov subspace methods for linear systems with multiple right-hand sides

被引:49
|
作者
Heyouni, M
Essai, A
机构
[1] Univ Littoral Cote Opale, Lab Math Pures & Appl Joseph Liouville, F-62228 Calais, France
[2] Univ Sci & Technol Lille, UFR IEEA M3, Lab Anal Numer & Optimisat, F-59655 Villeneuve Dascq, France
关键词
linear systems; multiple right-hand sides; matrix Krylov subspace; weighted global Arnoldi and global Hessenberg processes; matrix equations;
D O I
10.1007/s11075-005-1526-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give a result which links any global Krylov method for solving linear systems with several right-hand sides to the corresponding classical Krylov method. Then, we propose a general framework for matrix Krylov subspace methods for linear systems with multiple right-hand sides. Our approach use global projection techniques, it is based on the Global Generalized Hessenberg Process (GGHP) - which use the Frobenius scalar product and construct a basis of a matrix Krylov subspace - and on the use of a Galerkin or a minimizing norm condition. To accelerate the convergence of global methods, we will introduce weighted global methods. In these methods, the GGHP uses a different scalar product at each restart. Experimental results are presented to show the good performances of the weighted global methods.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 50 条
  • [21] Transpose-free Gl-BCG Algorithm for Linear Systems with Multiple Right-hand Sides
    Zhang, Jian-Hua
    Zhao, Jing
    ICIC 2009: SECOND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTING SCIENCE, VOL 3, PROCEEDINGS, 2009, : 353 - 356
  • [22] A block EN algorithm for nonsymmetric linear systems with multiple right-hand sides
    Gu, GD
    Wu, HB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) : 1 - 20
  • [23] Enlarged GMRES for solving linear systems with one or multiple right-hand sides
    Al Daas, Hussam
    Grigori, Laura
    Henon, Pascal
    Ricoux, Philippe
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1924 - 1956
  • [24] The block GMERR method for nonsymmetric linear systems with multiple right-hand sides
    Zhao, Jing
    Zhang, Jian-hua
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 179 - 183
  • [26] An approximate inverse preconditioner for Toeplitz systems with multiple right-hand sides
    Huang, Jie
    Huang, Ting-Zhu
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11370 - 11379
  • [27] A block GCROT(m, k) method for linear systems with multiple right-hand sides
    Meng, Jing
    Zhu, Pei-Yong
    Li, Hou-Biao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 544 - 554
  • [28] Accelerating data uncertainty quantification by solving linear systems with multiple right-hand sides
    Kalantzis, V.
    Bekas, C.
    Curioni, A.
    Gallopoulos, E.
    NUMERICAL ALGORITHMS, 2013, 62 (04) : 637 - 653
  • [29] Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides
    Abdel-Rehim, A. M.
    Stathopoulos, Andreas
    Orginos, Kostas
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (04) : 473 - 493
  • [30] Direct global Lanczos method for large linear systems with multiple right-hand sides
    S. Elgharbi
    M. Esghir
    O. Ibrihich
    B. Abouzaid
    M. Essaouini
    S. El Hajji
    Afrika Matematika, 2020, 31 : 57 - 69