Preserving objects in Markov Random Fields region growing image segmentation

被引:6
|
作者
Dawoud, Amer [1 ]
Netchaev, Anton [1 ]
机构
[1] Univ So Mississippi, Sch Comp, Hattiesburg, MS 39406 USA
关键词
Segmentation; Markov Random Fields; Energy function minimization; Fusion; UNSUPERVISED SEGMENTATION; WATERSHEDS; NOISY;
D O I
10.1007/s10044-011-0198-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an algorithm that preserves objects in Markov Random Fields (MRF) region growing based image segmentation. This is achieved by modifying the MRF energy minimization process so that it would penalize merging regions that have real edges in the boundary between them. Experimental results show that the integration of edge information increases the precision of the segmentation by ensuring the conservation of the objects contours during the region-growing process.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 50 条
  • [31] Markov random fields model and applications to image processing
    Smii, Boubaker
    AIMS MATHEMATICS, 2022, 7 (03): : 4459 - 4471
  • [32] Dynamic Markov Random Fields
    Torr, P. H. S.
    2008 INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, PROCEEDINGS, 2008, : 21 - 26
  • [33] Image Registration using Markov random coefficient fields
    Arce-Santana, Edgar Roman
    Alba, Alfonso
    COMBINATORIAL IMAGE ANALYSIS, 2008, 4958 : 306 - 317
  • [34] Generation of Optimal Random Fields for Image Segmentation using Fuzzy Multi-Region Technique
    Pemula, Rambabu
    Raju, C. Naga
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES), 2016, : 645 - 650
  • [35] Color image segmentation based on region growing algorithm
    Shin, J. (jpshin@u-aizu.ac.jp), 1600, Advanced Institute of Convergence Information Technology (07): : 152 - 160
  • [36] Region growing segmentation approach for image indexing and retrieval
    Irianto, Suhendro
    Jiang, HartMin
    Ipson, Stan S.
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS, 2007, : 227 - 231
  • [37] Unsupervised image segmentation using Markov random field models
    Barker, SA
    Rayner, PJW
    PATTERN RECOGNITION, 2000, 33 (04) : 587 - 602
  • [38] FUZZY RANDOM-FIELDS AND UNSUPERVISED IMAGE SEGMENTATION
    CAILLOL, H
    HILLION, A
    PIECZYNSKI, W
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (04): : 801 - 810
  • [39] Generation of Random Fields for Image Segmentation Techniques: A Review
    Pemula, Rambabu
    Kumar, Sagenela Vijaya
    Nagaraju, C.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (02)
  • [40] MULTITEMPORAL REGION-BASED CLASSIFICATION OF HIGH-RESOLUTION IMAGES BY MARKOV RANDOM FIELDS AND MULTISCALE SEGMENTATION
    Moser, Gabriele
    Serpico, Sebastiano B.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 102 - 105