Preserving objects in Markov Random Fields region growing image segmentation

被引:6
|
作者
Dawoud, Amer [1 ]
Netchaev, Anton [1 ]
机构
[1] Univ So Mississippi, Sch Comp, Hattiesburg, MS 39406 USA
关键词
Segmentation; Markov Random Fields; Energy function minimization; Fusion; UNSUPERVISED SEGMENTATION; WATERSHEDS; NOISY;
D O I
10.1007/s10044-011-0198-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an algorithm that preserves objects in Markov Random Fields (MRF) region growing based image segmentation. This is achieved by modifying the MRF energy minimization process so that it would penalize merging regions that have real edges in the boundary between them. Experimental results show that the integration of edge information increases the precision of the segmentation by ensuring the conservation of the objects contours during the region-growing process.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 50 条
  • [21] Color Segmentation for Historical Documents Using Markov Random Fields
    Pantke, Werner
    Haak, Arne
    Maergner, Volker
    2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 151 - 156
  • [22] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Santosh Hiremath
    Valentyn A. Tolpekin
    Gerie van der Heijden
    Alfred Stein
    Machine Vision and Applications, 2013, 24 : 845 - 854
  • [23] Unsupervised Segmentation of Markov Random Fields Corrupted by Nonstationary Noise
    Habbouchi, Ahmed
    Boudaren, Mohamed El Yazid
    Aissani, Amar
    Pieczynski, Wojciech
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1607 - 1611
  • [24] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Hiremath, Santosh
    Tolpekin, Valentyn A.
    van der Heijden, Gerie
    Stein, Alfred
    MACHINE VISION AND APPLICATIONS, 2013, 24 (04) : 845 - 854
  • [25] MRI image segmentation using multiscale autoregressive model and 3D Markov random fields
    Tardif, PM
    Zaccarin, A
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 1035 - 1046
  • [26] Hyperspectral Image Classification With CapsNet and Markov Random Fields
    Jiang, Xuefeng
    Zhang, Yue
    Liu, Wenbo
    Gao, Junyu
    Liu, Junrui
    Zhang, Yanning
    Lin, Jianzhe
    IEEE ACCESS, 2020, 8 : 191956 - 191968
  • [27] Textured image segmentation using multiresolution Markov Random Fields and a two-component texture model
    Li, CT
    Wilson, R
    SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 425 - 430
  • [28] An Image Fusion Approach Based on Markov Random Fields
    Xu, Min
    Chen, Hao
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (12): : 5116 - 5127
  • [29] Bayesian image classification using Markov random fields
    Berthod, M
    Kato, Z
    Yu, S
    Zerubia, J
    IMAGE AND VISION COMPUTING, 1996, 14 (04) : 285 - 295
  • [30] Statistical shape description using Gaussian Markov random fields and its application to medical image segmentation
    Neumann, A
    Lorenz, C
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 192 - 203