Non-linear analysis of EEG signals at various sleep stages

被引:313
|
作者
Acharya, R
Faust, O
Kannathal, N
Chua, T
Laxminarayan, S
机构
[1] Ngee Ann Polytech, Sch Engn, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] Idaho State Univ, Biomed Res Inst, Pocatello, ID 83209 USA
[3] Idaho State Univ, Inst Rural Hlth, Pocatello, ID 83209 USA
关键词
correlation dimension; sleep stages; approximate entropy; Hurst exponent; fractal dimension; Lyapunov exponent;
D O I
10.1016/j.cmpb.2005.06.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Application of non-linear dynamics methods to the physiological sciences demonstrated that non-linear models are useful for understanding complex physiological phenomena such as abrupt transitions and chaotic behavior. Sleep stages and sustained fluctuations of autonomic functions such as temperature, blood pressure, electroencephalogram (EEG), etc., can be described as a chaotic process. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The sleep data analysis is carried out using non-linear parameters: correlation dimension, fractal dimension, largest Lyapunov entropy, approximate entropy, Hurst exponent, phase space plot and recurrence plots. These non-linear parameters quantify the cortical function at different sleep stages and the results are tabulated. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [1] Non-linear analysis of EEG and HRV signals during sleep
    Martin, Alejandro
    Guerrero-Mora, Guillermina
    Dorantes-Mendez, Guadalupe
    Alba, Alfonso
    Mendez, Martin O.
    Chouvarda, Ioanna
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 4174 - 4177
  • [2] Non-linear analysis of the sleep EEG
    Kobayashi, T
    Misaki, K
    Nakagawa, H
    Madokoro, S
    Ihara, H
    Tsuda, K
    Umezawa, Y
    Murayama, J
    Isaki, K
    PSYCHIATRY AND CLINICAL NEUROSCIENCES, 1999, 53 (02) : 159 - 161
  • [3] Non-linear EEG measures during sleep: effects of the different sleep stages and cyclic alternating pattern
    Ferri, R
    Parrino, L
    Smerieri, A
    Terzano, MG
    Elia, M
    Musumeci, SA
    Pettinato, S
    Stam, CJ
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2002, 43 (03) : 273 - 286
  • [4] Linear and Non-linear Analysis of EEG During Sleep Deprivation in Subjects with and Without Epilepsy
    Marino, Silvia
    Silveri, Giulia
    Bonanno, Lilla
    De Salvo, Simona
    Cartella, Emanuele
    Miladinovic, Aleksandar
    Ajcevic, Milos
    Accardo, Agostino
    XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019, 2020, 76 : 125 - 132
  • [5] Modular Based Dynamic Analysis of EEG Signals Using Non-Linear Feature
    Sood, Meenakshi
    Bhooshan, Sunil V.
    2014 INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2014, : 186 - 190
  • [6] Usefulness of non-linear EEG analysis
    Micheloyannis, S
    Flitzanis, N
    Papanikolaou, E
    Bourkas, M
    Terzakis, D
    Arvanitis, S
    Stam, CJ
    ACTA NEUROLOGICA SCANDINAVICA, 1998, 97 (01): : 13 - 19
  • [7] EEG signals classification using linear and non-linear discriminant methods
    Mayor Torres, Juan Manuel
    HOMBRE Y LA MAQUINA, 2013, (41): : 71 - 80
  • [8] Non-linear behaviour of human EEG:: fractal exponent versus correlation dimension in awake and sleep stages
    Pereda, E
    Gamundi, A
    Rial, R
    González, J
    NEUROSCIENCE LETTERS, 1998, 250 (02) : 91 - 94
  • [9] Characterization of Memory Load in an Arithmetic Task using Non-Linear Analysis of EEG Signals
    Zarjam, Pega
    Epps, Julien
    Lovell, Nigel H.
    Chen, Fang
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3519 - 3522
  • [10] PREDICTIVE VALUE OF EARLY LINEAR AND NON-LINEAR ANALYSIS OF EEG SIGNALS IN BRAIN DAMAGE ON NEUROLOGICAL OUTCOME
    Prisco, L.
    Ganau, M.
    Cusenza, M.
    Accardo, A.
    Calligaris, W.
    Draisci, A.
    Romano, G.
    Semencic, M.
    Monti, F.
    INTENSIVE CARE MEDICINE, 2013, 39 : S217 - S217