Coherence of vortex Bessel-like beams in a turbulent atmosphere

被引:9
作者
Lukin, Igor P. [1 ]
机构
[1] VE Zuev Inst Atmospher Opt SB RAS, 1 Academician Zuev Sq, Tomsk 634055, Russia
关键词
PROPAGATION PROPERTIES; GAUSSIAN BEAMS; DESIGN;
D O I
10.1364/AO.387549
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherent properties of vortex conical waves propagating through a turbulent atmosphere are theoretically studied with the use of the analytical solution of an equation that describes the evolution of the second-order transverse mutual coherence function of an optical radiation field. The following parameters of vortex conical waves are considered: the degree of coherence, the coherence radius, the integral scale of the degree of coherence, and the integral scale of the squared degree of coherence. The effect of atmospheric turbulence on these coherence characteristics of vortex conical waves is analyzed at different values of their parameters. It turns out that the degree of coherence of a vortex conical wave, formed from a Gaussian beam while passing through a conical lens (axicon) and a spiral phase plate, at its optical axis, is almost independent of the initial radius of the Gaussian beam and the radius of the axicon aperture. In addition, all the coherence characteristics of vortex conical waves depend on the topological charge stronger than on the wave-vector component normal to the radiation propagation direction. A meter of the integral scale of the degree of coherence of vortex Bessel-like optical beams is shown to be a preferred sensor of optical radiation distortions in a turbulent atmosphere as compared to a meter of the coherence radius of such beams. A lower degree of coherence of vortex conical waves than of fundamental (vortex-free) conical waves in a turbulent atmosphere is proven with the use of the integral scale of the degree of coherence of these optical waves as a referent criterion. (C) 2020 Optical Society of America
引用
收藏
页码:3833 / 3841
页数:9
相关论文
共 33 条
[1]   Intensity distribution around the focal regions of real axicons [J].
Akturk, Selcuk ;
Zhou, Bing ;
Pasquiou, Benjamin ;
Franco, Michel ;
Mysyrowicz, Andre .
OPTICS COMMUNICATIONS, 2008, 281 (17) :4240-4244
[2]  
Andrews L.C., 2005, Laser Beam Propagation through Random Media, DOI DOI 10.1117/3.626196
[3]   Generating superimposed Bessel beams with a volume holographic axicon [J].
Asuncion, Alvie J. ;
Guerrero, Raphael A. .
APPLIED OPTICS, 2017, 56 (14) :4206-4212
[4]   Long-distance Bessel beam propagation through Kolmogorov turbulence [J].
Birch, Philip ;
Ituen, Iniabasi ;
Young, Rupert ;
Chatwin, Chris .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (11) :2066-2073
[5]   Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere [J].
Chen, Baosuan ;
Chen, Ziyang ;
Pu, Jixiong .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (06) :820-827
[6]   Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation [J].
Chen, Shi ;
Li, Shuhui ;
Zhao, Yifan ;
Liu, Jun ;
Zhu, Long ;
Wang, Andong ;
Du, Jing ;
Shen, Li ;
Wang, Jian .
OPTICS LETTERS, 2016, 41 (20) :4680-4683
[7]   Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence [J].
Cheng, Mingjian ;
Guo, Lixin ;
Li, Jiangting ;
Huang, Qingqing .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (08) :1442-1450
[8]  
Cop65 E. T., 1965, Cambridge Tracts in Mathematics and Mathematical Physics, V55
[9]   Photonic nanohelix generated by a binary spiral axicon [J].
Degtyarev, Sergey A. ;
Porfirev, Alexey P. ;
Khonina, Svetlana N. .
APPLIED OPTICS, 2016, 55 (12) :B44-B48
[10]   Miniaturized photogenerated electro-optic axicon lens Gaussian-to-Bessel beam conversion [J].
Di Domenico, G. ;
Parravicini, J. ;
Antonacci, G. ;
Silvestri, S. ;
Agranat, A. J. ;
DelRe, E. .
APPLIED OPTICS, 2017, 56 (10) :2908-2911