MULTI-POINT VARIATIONS OF THE SCHWARZ LEMMA WITH DIAMETER AND WIDTH CONDITIONS

被引:9
|
作者
Betsakos, Dimitrios [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
Holomorphic function; Schwarz lemma; Steiner symmetrization; capacity; Green function; inner function; diameter; width; SYMMETRIZATION;
D O I
10.1090/S0002-9939-2011-10954-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that f is holomorphic ill the unit disk D and f(D) subset of D, f(0) = 0. A classical inequality due to Littlewood generalizes the Schwarz lemma and asserts that for every w is an element of f(D), we have vertical bar w vertical bar <= Pi(j) vertical bar z(j)(w)vertical bar, where z(j)(w) is the sequence of pre-images of w. We prove a similar inequality by replacing the assumption f(D) subset of D with the weaker assumption Diam f(D) = 2. This inequality generalizes a growth bound involving only one pre-image, proven recently by Burckel et al. We also prove growth bounds for holomorphic f mapping D onto a region having fixed horizontal width. We give a complete characterization of the equality cases. The main tools in the proofs are the Green function and the Steiner symmetrization.
引用
收藏
页码:4041 / 4052
页数:12
相关论文
共 50 条
  • [1] On a Multi-Point Schwarz-Pick Lemma
    Kyung Hyun Cho
    Seong-A Kim
    Toshiyuki Sugawa
    Computational Methods and Function Theory, 2012, 12 : 483 - 499
  • [2] A multi-point Schwarz-Pick Lemma
    Beardon, AF
    Minda, D
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1): : 81 - 104
  • [3] A multi-point Schwarz-Pick Lemma
    A. F. Beardon
    D. Minda
    Journal d’Analyse Mathématique, 2004, 92 : 81 - 104
  • [4] On a Multi-Point Schwarz-Pick Lemma
    Cho, Kyung Hyun
    Kim, Seong-A
    Sugawa, Toshiyuki
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2012, 12 (02) : 483 - 499
  • [5] AREA, CAPACITY AND DIAMETER VERSIONS OF SCHWARZ'S LEMMA
    Burckel, Robert B.
    Marshall, Donald E.
    Minda, David
    Poggi-Corradini, Pietro
    Ransford, Thomas J.
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 133 - 152
  • [6] Multi-Point to Multi-Point Traffic Engineering
    Chaitou, Mohamad
    Le Roux, Jean-Louis
    2008 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, VOLS 1-3, 2008, : 382 - 390
  • [7] THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT
    Jeong, Moonja
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (03): : 219 - 227
  • [8] Schwarz lemma involving the boundary fixed point
    Xu Q.
    Tang Y.
    Yang T.
    Srivastava H.M.
    Fixed Point Theory and Applications, 2016 (1)
  • [9] Multi-point to Multi-point MIMO in Wireless LANs
    Yun, Sangki
    Qiu, Lili
    Bhartia, Apurv
    2013 PROCEEDINGS IEEE INFOCOM, 2013, : 125 - 129
  • [10] Spatial and temporal variations of CIRs: Multi-point observations by STEREO
    Gomez-Herrero, R.
    Malandraki, O.
    Dresing, N.
    Kilpua, E.
    Heber, B.
    Klassen, A.
    Mueller-Mellin, R.
    Wimmer-Schweingruber, R. F.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (04) : 551 - 565