QUASISYMMETRIC FUNCTIONS FOR NESTOHEDRA

被引:6
作者
Grujic, Vladimir [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade 11000, Serbia
关键词
combinatorial Hopf algebra; nestohedron; graph-associahedron; quasisymmetric function; P-partition; COMBINATORIAL HOPF-ALGEBRAS; DEHN-SOMMERVILLE RELATIONS; COMPLEXES; GRAPH;
D O I
10.1137/16M105914X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a generalized permutohedron Q the enumerator F(Q) of positive lattice points in interiors of maximal cones of the normal fan SQ is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and satisfies the recurrence relation with respect to deletions of vertices.
引用
收藏
页码:2570 / 2585
页数:16
相关论文
共 22 条
  • [1] Combinatorial Hopf algebras and generalized Dehn-Sommerville relations
    Aguiar, M
    Bergeron, N
    Sottile, F
    [J]. COMPOSITIO MATHEMATICA, 2006, 142 (01) : 1 - 30
  • [2] [Anonymous], [No title captured]
  • [3] [Anonymous], 1999, Enumerative Combinatorics
  • [4] COMBINATORIAL HOPF ALGEBRAS OF SIMPLICIAL COMPLEXES
    Benedetti, Carolina
    Hallam, Joshua
    Machacek, John
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1737 - 1757
  • [5] A quasisymmetric function for matroids
    Billera, Louis J.
    Jia, Ning
    Reiner, Victor
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (08) : 1727 - 1757
  • [6] Ring of simple polytopes and differential equations
    Buchstaber, V. M.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 263 (01) : 13 - 37
  • [7] Coxeter complexes and graph-associahedra
    Carr, Michael
    Devadoss, Satyan L.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (12) : 2155 - 2168
  • [8] On posets and Hopf algebras
    Ehrenborg, R
    [J]. ADVANCES IN MATHEMATICS, 1996, 119 (01) : 1 - 25
  • [9] Feichtner EM, 2005, PORT MATH, V62, P437
  • [10] GRUJIC V., 2012, ELECTRON J COMB, V19, P42