Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution

被引:325
作者
Rego, E. Hesper [1 ,2 ]
Shao, Lin [2 ]
Macklin, John J. [2 ]
Winoto, Lukman [3 ,4 ]
Johansson, Goeran A. [5 ]
Kamps-Hughes, Nicholas [5 ]
Davidson, Michael W. [6 ]
Gustafsson, Mats G. L. [2 ]
机构
[1] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94158 USA
[2] Howard Hughes Med Inst, Ashburn, VA 20147 USA
[3] Univ Calif San Francisco, Keck Ctr Adv Microscopy, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94158 USA
[6] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
关键词
patterned excitation; moire; subdiffraction; FLUORESCENCE MICROSCOPY; CRYSTAL-STRUCTURE; NUCLEAR-PORE; SUBDIFFRACTION-RESOLUTION; SUPERRESOLUTION; LOCALIZATION; DIFFRACTION; DEPLETION; NANOSCOPY; DOMAIN;
D O I
10.1073/pnas.1107547108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using ultralow light intensities that are well suited for investigating biological samples, we demonstrate whole-cell superresolution imaging by nonlinear structured-illumination microscopy. Structured-illumination microscopy can increase the spatial resolution of a wide-field light microscope by a factor of two, with greater resolution extension possible if the emission rate of the sample responds nonlinearly to the illumination intensity. Saturating the fluorophore excited state is one such nonlinear response, and a realization of this idea, saturated structured-illumination microscopy, has achieved approximately 50-nm resolution on dye-filled polystyrene beads. Unfortunately, because saturation requires extremely high light intensities that are likely to accelerate photobleaching and damage even fixed tissue, this implementation is of limited use for studying biological samples. Here, reversible photoswitching of a fluorescent protein provides the required nonlinearity at light intensities six orders of magnitude lower than those needed for saturation. We experimentally demonstrate approximately 40-nm resolution on purified microtubules labeled with the fluorescent photoswitchable protein Dronpa, and we visualize cellular structures by imaging the mammalian nuclear pore and actin cytoskeleton. As a result, nonlinear structured-illumination microscopy is now a biologically compatible superresolution imaging method.
引用
收藏
页码:E135 / E143
页数:9
相关论文
共 44 条
[21]   Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories [J].
Hess, Samuel T. ;
Gould, Travis J. ;
Gudheti, Manasa V. ;
Maas, Sarah A. ;
Mills, Kevin D. ;
Zimmerberg, Joshua .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (44) :17370-17375
[22]   Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J].
Hess, Samuel T. ;
Girirajan, Thanu P. K. ;
Mason, Michael D. .
BIOPHYSICAL JOURNAL, 2006, 91 (11) :4258-4272
[23]   Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins [J].
Hofmann, M ;
Eggeling, C ;
Jakobs, S ;
Hell, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (49) :17565-17569
[24]  
Inoue S., 2006, HDB BIOL CONFOCAL MI, V3rd
[25]  
Kner P, 2009, NAT METHODS, V6, P339, DOI [10.1038/nmeth.1324, 10.1038/NMETH.1324]
[26]   Superresolution by localization of quantum dots using blinking statistics [J].
Lidke, KA ;
Rieger, B ;
Jovin, TM ;
Heintzmann, R .
OPTICS EXPRESS, 2005, 13 (18) :7052-7062
[27]   Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog [J].
Lukyanov, KA ;
Fradkov, AF ;
Gurskaya, NG ;
Matz, MV ;
Labas, YA ;
Savitsky, AP ;
Markelov, ML ;
Zaraisky, AG ;
Zhao, XN ;
Fang, Y ;
Tan, WY ;
Lukyanov, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :25879-25882
[28]  
McKinney SA, 2009, NAT METHODS, V6, P131, DOI [10.1038/nmeth.1296, 10.1038/NMETH.1296]
[29]  
Ormo M, 1996, SCIENCE, V273, P1392, DOI 10.1126/science.273.5280.1392
[30]   Photobleaching in two-photon excitation microscopy [J].
Patterson, GH ;
Piston, DW .
BIOPHYSICAL JOURNAL, 2000, 78 (04) :2159-2162