Evolutionary Multi-objective Optimization of Particle Swarm Optimizers

被引:2
作者
Veenhuis, Christian [1 ]
Koeppen, Mario [2 ]
Vicente-Garcia, Raul [1 ]
机构
[1] Fraunhofer IPK, Pascalstr 8-9, D-10587 Berlin, Germany
[2] Kyushu Inst Technol, Fukuoka 8208502, Japan
来源
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS | 2007年
关键词
D O I
10.1109/CEC.2007.4424754
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One issue in applying Particle Swarm Optimization (PSO) is to find a good working set of parameters. The standard settings often work sufficiently but don't exhaust the possibilities of PSO. Furthermore, a trade-off between accuracy and computation time is of interest for complex evaluation functions. This paper presents results for using an EMO approach to optimize PSO parameters as well as to find a set of trade-offs between mean fitness and swarm size. It is applied to four typical benchmark functions known from literature. The results indicate that using an EMO approach simplifies the decision process of choosing a parameter set for a given problem.
引用
收藏
页码:2273 / +
页数:3
相关论文
共 16 条
[1]  
COELLO CA, 1998, 9808 LANIA
[2]  
Coello CAC, 2001, LECT NOTES COMPUT SC, V1993, P21
[3]  
Eberhart RC., 2001, SWARM INTELL-US
[4]  
Engelbrecht A., 2005, Fundamentals of Computational Swarm Intelligence
[5]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16
[6]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
[7]  
Kennedy J., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1931, DOI 10.1109/CEC.1999.785509
[8]  
Kennedy J, 2002, IEEE C EVOL COMPUTAT, P1671, DOI 10.1109/CEC.2002.1004493
[9]  
Köppen M, 2004, NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2, P140
[10]  
MATEKOVITS L, 2005, P 2005 IEEE ANT PROP, V2, P33