Stochastic scalar conservation laws

被引:95
作者
Feng, Jin [1 ]
Nualart, David [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
stochastic analysis; scalar conservation law; stochastic compensated compactness;
D O I
10.1016/j.jfa.2008.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of stochastic entropic solution a la Kruzkov, but with Ito's calculus replacing deterministic calculus. This results in a rich family of stochastic inequalities defining what we mean by a solution. A uniqueness theory is then developed following a stochastic generalization of L-1 contraction estimate. An existence theory is also developed by adapting compensated compactness arguments to stochastic setting. We use approximating models of vanishing viscosity solution type for the construction. While the uniqueness result applies to any spatial dimensions, the existence result, in the absence of special structural assumptions, is restricted to one spatial dimension only. Published by Elsevier Inc.
引用
收藏
页码:313 / 373
页数:61
相关论文
共 21 条
[1]  
Ambrosio L., 2005, LEC MATH
[2]  
[Anonymous], 1990, CBMS REG C SER MATH
[3]  
Chen GQ, 2005, HBK DIFF EQUAT EVOL, V2, P1
[4]  
Dafermos C., 2000, Hyperbolic Conservation Laws in Continuum Physics
[5]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[6]  
Ethier S. N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[7]  
Evans, 1998, PARTIAL DIFFERENTIAL, DOI DOI 10.1090/GSM/019
[8]   On a stochastic scalar conservation law [J].
Kim, JU .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) :227-256
[9]  
KRUZKOV S, 1972, MATH USSR SB, V10, P217
[10]  
Kruzkov SN, 1970, Mat. Sb. (N.S.), V10, P217, DOI [10.1070/SM1970v010n02ABEH002156, DOI 10.1070/SM1970V010N02ABEH002156]