Invertibility of operators in spaces of real interpolation

被引:0
作者
Asekritova, Irina [1 ]
Kruglyak, Natan [2 ]
机构
[1] Vaxjo Univ, Sch Math & Syst Engn, SE-35195 Vaxjo, Sweden
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
来源
REVISTA MATEMATICA COMPLUTENSE | 2008年 / 21卷 / 01期
关键词
real interpolation; invertible operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a linear bounded operator from a couple (X) over right arrow = (X-0, X-1) to a couple (Y) over right arrow = (Y-0, Y-1) such that the restrictions of A on the spaces X-0 and X-1 have bounded inverses. This condition does not imply that the restriction of A on the real interpolation space (X-0, X-1)(theta,q) has a bounded inverse for all values of the parameters theta and q. In this paper under some conditions on the kernel of A we describe all spaces (X-0, X-1)(theta,q) such that the operator A : (x(0), X-1)(theta,q) -> (Y-0, Y-1) has a bounded inverse.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1991, N HOLLAND MATH LIB
[2]  
Asekritova I, 1997, STUD MATH, V122, P99
[3]  
ASTASHKIN SV, 2006, ST PETERSB MATH J, V17, P239, DOI 10.1090/S1061-0022-06-00902-2
[4]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[5]  
CALDERON AP, 1983, N HOLLAND MATH STUD, V111, P33
[6]  
CALDERON AP, 1991, P AM MATH SOC, V112, P91
[7]   STABILITY OF FREDHOLM PROPERTIES ON INTERPOLATION SCALES [J].
CAO, W ;
SAGHER, Y .
ARKIV FOR MATEMATIK, 1990, 28 (02) :249-258
[8]  
DAVID G, 1999, ARK MAT, V37, P323
[9]  
DAVID G, 1986, ANN I FOURIER GRENOB, V36, P109
[10]  
Ivanov S., 2002, ST PETERSBURG MATH J, V13, P221