Mathematical Framework for Phase-Triangulation Algorithms in Distributed-Scatterer Interferometry

被引:88
作者
Cao, Ning [1 ,2 ]
Lee, Hyongki [1 ,2 ]
Jung, Hahn Chul [3 ,4 ]
机构
[1] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA
[2] Univ Houston, Natl Ctr Airborne Laser Mapping, Houston, TX 77204 USA
[3] NASA, Goddard Space Flight Ctr, Off Appl Sci, Greenbelt, MD 20771 USA
[4] Sci Syst & Applicat Inc, Lanham, MD 20706 USA
关键词
Differential interferometric synthetic aperture radar (DInSAR); distributed scatterer (DS) interferometry; persistent scatterer (PS) interferometry (PSI); phase triangulation (PT); synthetic aperture radar (SAR); SAR; STATISTICS;
D O I
10.1109/LGRS.2015.2430752
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To improve the spatial density of measurement points of persistent-scatterer interferometry, distributed scatterer (DS) should be considered and processed. An important procedure in DS interferometry is the phase triangulation (PT). This letter introduces two modified PT algorithms (i.e., equal-weighted PT and coherence-weighted PT) and analyzes the mathematical relations between different published PT methods (i.e., the maximum-likelihood phase estimator, least squares estimator, and eigendecomposition-based phase estimators). The analysis shows that the above five PT methods share very similar mathematical forms with different weight values in the estimation procedure.
引用
收藏
页码:1838 / 1842
页数:5
相关论文
共 18 条
[1]   A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms [J].
Berardino, P ;
Fornaro, G ;
Lanari, R ;
Sansosti, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (11) :2375-2383
[2]  
Bishop Christopher, 2006, Pattern Recognition and Machine Learning, DOI 10.1117/1.2819119
[3]  
De Zan F, 2005, INT GEOSCI REMOTE SE, P1987
[4]  
Demmel J. W., 1997, Applied Numerical Linear Algebra
[5]   Permanent scatterers in SAR interferometry [J].
Ferretti, A ;
Prati, C ;
Rocca, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (01) :8-20
[6]   A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR [J].
Ferretti, Alessandro ;
Fumagalli, Alfio ;
Novali, Fabrizio ;
Prati, Claudio ;
Rocca, Fabio ;
Rucci, Alessio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (09) :3460-3470
[7]   CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing [J].
Fornaro, Gianfranco ;
Verde, Simona ;
Reale, Diego ;
Pauciullo, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :2050-2065
[8]   A Distributed Scatterer Interferometry Approach for Precision Monitoring of Known Surface Deformation Phenomena [J].
Goel, Kanika ;
Adam, Nico .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09) :5454-5468
[9]   STATISTICAL-ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX GAUSSIAN DISTRIBUTION (AN INTRODUCTION) [J].
GOODMAN, NR .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01) :152-&
[10]   On the Exploitation of Target Statistics for SAR Interferometry Applications [J].
Guarnieri, Andrea Monti ;
Tebaldini, Stefano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3436-3443