Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions

被引:857
作者
Yang, Zheng [1 ]
Ko, Changhyun [1 ]
Ramanathan, Shriram [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 41 | 2011年 / 41卷
关键词
oxide electronics; ultrafast switch; Mott transition; correlated oxides; vanadium dioxide (VO2); THIN-FILMS; PHASE-TRANSITION; MOTT TRANSITION; ELECTRIC-FIELD; VO2; SEMICONDUCTOR; GROWTH; MICROSCOPY; HUBBARD; PEIERLS;
D O I
10.1146/annurev-matsci-062910-100347
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although phase transitions have long been a centerpiece of condensed matter materials science studies, a number of recent efforts focus on potentially exploiting the resulting functional property changes in novel electronics and photonics as well as understanding emergent phenomena. This is quite timely, given a grand challenge in twenty-first-century physical sciences is related to enabling continued advances in information processing and storage beyond conventional CMOS scaling. In this brief review, we discuss synthesis of strongly correlated oxides, mechanisms of metal-insulator transitions, and exploratory electron devices that are being studied. Particular emphasis is placed on vanadium dioxide, which undergoes a sharp metal-insulator transition near room temperature at ultrafast timescales. The article begins with an introduction to metal-insulator transition in oxides, followed by a brief discussion on the mechanisms leading to the phase transition. The role of materials synthesis in influencing functional properties is discussed briefly. Recent efforts on realizing novel devices such as field effect switches, optical detectors, nonlinear circuit components, and solid-state sensors are reviewed. The article concludes with a brief discussion on future research directions that may be worth consideration.
引用
收藏
页码:337 / 367
页数:31
相关论文
共 154 条
  • [1] MECHANISMS FOR METAL-NONMETAL TRANSITIONS IN TRANSITION-METAL OXIDES AND SULFIDES
    ADLER, D
    [J]. REVIEWS OF MODERN PHYSICS, 1968, 40 (04) : 714 - +
  • [2] Electric field effect in correlated oxide systems
    Ahn, CH
    Triscone, JM
    Mannhart, J
    [J]. NATURE, 2003, 424 (6952) : 1015 - 1018
  • [3] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [4] [Anonymous], 1974, Metal-Insulator Transitions Taylor and Francis
  • [5] [Anonymous], ANN REV MAT SCI
  • [6] [Anonymous], 1990, Metal-Insulator Transitions
  • [7] Current switching of resistive states in magnetoresistive manganites
    Asamitsu, A
    Tomioka, Y
    Kuwahara, H
    Tokura, Y
    [J]. NATURE, 1997, 388 (6637) : 50 - 52
  • [8] METALLIC AND NONMETALLIC BEHAVIOR IN TRANSITION METAL OXIDES
    AUSTIN, IG
    MOTT, NF
    [J]. SCIENCE, 1970, 168 (3927) : 71 - &
  • [9] Nanostructure-dependent metal-insulator transitions in vanadium-oxide nanowires
    Baik, Jeong Min
    Kim, Myung Hwa
    Larson, Christopher
    Wodtke, Alec M.
    Moskovits, Martin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (35) : 13328 - 13331
  • [10] Pd-Sensitized Single Vanadium Oxide Nanowires: Highly Responsive Hydrogen Sensing Based on the Metal-insulator Transition
    Baik, Jeong Min
    Kim, Myung Hwa
    Larson, Christopher
    Yavuz, Cafer T.
    Stucky, Galen D.
    Wodtke, Alec M.
    Moskovits, Martin
    [J]. NANO LETTERS, 2009, 9 (12) : 3980 - 3984