Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order

被引:11
作者
Abdelkawy, M. A. [1 ,2 ]
Babatin, Mohammed M. [1 ]
Lopes, Antonio M. [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
关键词
Spectral collocation method; Gauss-Lobatto quadrature; Caputo fractional derivative; Distributed order time-fractional diffusion-wave equation; FINITE-DIFFERENCE METHODS; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; COLLOCATION METHOD; CONVERGENCE ANALYSIS; ANOMALOUS DIFFUSION; GAUSS-COLLOCATION; SPATIAL ACCURACY; BOUNDED DOMAIN; ELEMENT-METHOD;
D O I
10.1007/s40314-020-1070-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new method for calculating the numerical solution of distributed-order time-fractional-sub-diffusion equations (DO-TFSDE) of fourth order. The method extends the shifted fractional Jacobi (SFJ) collocation scheme for discretizing both the time and space variables. The approximate solution is expressed as a finite expansion of SFJ polynomials whose derivatives are evaluated at the SFJ quadrature points. The process yields a system of algebraic equations that are solved analytically. The new method is compared with alternative numerical algorithms when solving different types of DO-TFSDE. The results show that the proposed method exhibits superior accuracy with an exponential convergence rate.
引用
收藏
页数:22
相关论文
共 56 条
[1]   Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations [J].
Abdelkawy, M. A. ;
Lopes, Antonio M. ;
Zaky, M. A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
[2]   A Collocation Method Based on Jacobi and Fractional Order Jacobi Basis Functions for Multi-Dimensional Distributed-Order Diffusion Equations [J].
Abdelkawy, M. A. .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (7-8) :781-792
[3]  
Agrawal O.P., 2000, FRACT CALC APPL ANAL, V3, P1
[4]   A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
COMPUTERS & STRUCTURES, 2001, 79 (16) :1497-1501
[5]   A finite element approximation for a class of Caputo time-fractional diffusion equations [J].
Ammi, Moulay Rchid Sidi ;
Jamiai, Ismail ;
Torres, Delfim F. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) :1334-1344
[6]  
Bhrawy AH, 2015, P ROMANIAN ACAD A, V16, P490
[7]  
Bhrawy AH, 2015, ROM J PHYS, V60, P344
[8]   A fully spectral collocation approximation formulti-dimensional fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 :462-483
[9]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[10]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895