We describe a new approximation method for solving a PDE-constrained optimization problem numerically. Our method is based on the adjoint formulation of the optimization problem, leading to a system of weakly coupled, elliptic PDEs. These equations are then solved using kernel-based collocation. We derive an error analysis and give numerical examples.
机构:
Chemnitz University of Technology, Faculty of Mathematics, D-09126 ChemnitzChemnitz University of Technology, Faculty of Mathematics, D-09126 Chemnitz
Herzog R.
Kunisch K.
论文数: 0引用数: 0
h-index: 0
机构:
Karl-Franzens University Graz, A-8010 GrazChemnitz University of Technology, Faculty of Mathematics, D-09126 Chemnitz
机构:
Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
Guizhou Educ Univ, Sch Math & Big Data, Guiyang 550018, Peoples R ChinaGuizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
Yong, Jinjun
Luo, Xianbing
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R ChinaGuizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
Luo, Xianbing
Sun, Shuyu
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Computat Transport Phenomena Lab, Thuwal 239556900, Saudi ArabiaGuizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
Sun, Shuyu
Ye, Changlun
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R ChinaGuizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China