Interactive Design of Developable Surfaces

被引:107
作者
Tang, Chengcheng [1 ]
Bo, Pengbo [1 ,2 ,5 ]
Wallner, Johannes [3 ]
Pottmann, Helmut [1 ,4 ]
机构
[1] King Abdullah Univ Sci & Technol, Jeddah 239556900, Saudi Arabia
[2] Harbin Inst Technol, Harbin, Peoples R China
[3] Graz Univ Technol, Kopernikusgasse 24, A-8010 Graz, Austria
[4] Vienna Univ Technol, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
[5] Harbin Inst Technol Weihai, 2 West Wenhua Rd, Shandong 264209, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2016年 / 35卷 / 02期
基金
中国国家自然科学基金; 奥地利科学基金会;
关键词
Interactive design; computational differential geometry; developable surface; spline surface; origami; curved folding; isometric deformation; digital reconstruction; constraint solving; BEZIER; CURVATURE; MESHES;
D O I
10.1145/2832906
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new approach to geometric modeling with developable surfaces and the design of curved-creased origami. We represent developables as splines and express the nonlinear conditions relating to developability and curved folds as quadratic equations. This allows us to utilize a constraint solver, which may be described as energy-guided projection onto the constraint manifold, and which is fast enough for interactive modeling. Further, a combined primal-dual surface representation enables us to robustly and quickly solve approximation problems.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 1978, A Practical Guide to Splines
[2]  
[Anonymous], 1976, Differential Geometry of Curves and Surfaces
[3]   A simple algorithm for designing developable Bezier surfaces [J].
Aumann, G .
COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (8-9) :601-619
[4]   Interpolation with developable Bezier patches [J].
Aumann, Guenter .
Computer Aided Geometric Design, 1991, 8 (05) :409-420
[5]   DESIGN OF DEVELOPABLE SURFACES USING DUALITY BETWEEN PLANE AND POINT GEOMETRIES [J].
BODDULURI, RMC ;
RAVANI, B .
COMPUTER-AIDED DESIGN, 1993, 25 (10) :621-632
[6]  
Chen DR, 2002, PROG NAT SCI-MATER, V12, P383
[7]   A fully geometric approach for developable cloth deformation simulation [J].
Chen, Ming ;
Tang, Kai .
VISUAL COMPUTER, 2010, 26 (6-8) :853-863
[8]  
Chu C-H, 2004, P DETC, V1, P431, DOI 10.1115/DETC2004-57257
[9]   Developable Bezier patches:: properties and design [J].
Chu, CH ;
Séquin, CH .
COMPUTER-AIDED DESIGN, 2002, 34 (07) :511-527
[10]  
Demaine ED, 2011, ORIGAMI(5): FIFTH INTERNATIONAL MEETING OF ORIGAMI SCIENCE, MATHEMATICS, AND EDUCATION, P39