In order to understand the partonic EOS of matter created at RHIC, one needs to study both the collectivity of the produced matter and the degree of thermalization. We propose to address this physics through the study of heavy flavour hadrons in high-energy nuclear collisions at RHIC. The heavy flavour tracker (HFT), a tracking upgrade of the STAR experiment, is being designed to provide an unambiguous measurement of charm hadrons through the direct reconstruction of hadronic decays. These measurements require high accuracy space points near the collision vertex. The current design of our detector uses a novel CMOS-based sensor, allowing for a low-mass and high-resolution detector element. We provide rate estimations for D-0 v(2) measurements in Au+Au collisions at 200 GeV.