Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source

被引:217
作者
Lankeit, Johannes [1 ]
机构
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
关键词
Chemotaxis; Logistic source; Existence; Weak solutions; Eventual smoothness; KELLER-SEGEL SYSTEM; GLOBAL-SOLUTIONS; BOUNDEDNESS; ATTRACTOR; DIMENSION;
D O I
10.1016/j.jde.2014.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence of global weak solutions to the chemotaxis system u(t) = Delta u - del . (u del v) + kappa u - mu u(2) v(t) = Delta v - v + u under homogeneous Neumann boundary conditions in a smooth bounded convex domain Omega subset of R-n, for arbitrarily small values of mu > 0. Additionally, we show that in the three-dimensional setting, after some time, these solutions become classical solutions, provided that kappa is not too large. In this case, we also consider their large-time behaviour: We prove decay if kappa <= 0 and the existence of an absorbing set if kappa > 0 is sufficiently small. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1158 / 1191
页数:34
相关论文
共 30 条
  • [1] Lower estimate of the attractor dimension for a chemotaxis growth system
    Aida, Masashi
    Tsujikawa, Tohru
    Efendiev, Messoud
    Yagi, Atsushi
    Mimura, Masayasu
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 453 - 474
  • [2] [Anonymous], ARXIV14031837
  • [3] [Anonymous], 2013, Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization
  • [4] [Anonymous], 1959, Estratto Ann. Sc. Norm. Super. Pisa
  • [5] [Anonymous], Pure and Applied Mathematics, VVII
  • [6] [Anonymous], 2003, I. Jahresber. Deutsch. Math.-Verein.
  • [7] Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
    Baghaei, Khadijeh
    Hesaaraki, Mahmoud
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 585 - 591
  • [8] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Cao, Xinru
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 181 - 188
  • [9] A Note on Aubin-Lions-DubinskiA Lemmas
    Chen, Xiuqing
    Juengel, Ansgar
    Liu, Jian-Guo
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) : 33 - 43
  • [10] A user's guide to PDE models for chemotaxis
    Hillen, T.
    Painter, K. J.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) : 183 - 217