Dual bipartite Q-polynomial distance-regular graphs

被引:14
作者
Dickie, GA [1 ]
Terwilliger, PM [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
D O I
10.1006/eujc.1996.0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the dual bipartite Q-polynomial distance-regular graphs of diameter d greater than or equal to 5 which are not bipartite. Results of Curtin and Nomura give a classification of the dual bipartite Q-polynomial distance-regular graphs of diameter d greater than or equal to 6 which are bipartite. This completes a classification of the dual bipartite Q-polynomial distance-regular graphs of diameter d greater than or equal to 6. (C) 1996 Academic Press Limited
引用
收藏
页码:613 / 623
页数:11
相关论文
共 9 条
[1]  
Bannai E., 1984, Algebraic Combinatorics I
[2]  
Brouwer A.E., 1989, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), V3
[3]  
CURTIN B, UNPUB CLASS BIPARTIT
[4]  
NOMURA K, SPIN MODELS BIPARTIT
[5]  
SZEGO G, 1975, AM MATH SOC C PUBL, V23
[6]   BALANCED SETS AND Q-POLYNOMIAL ASSOCIATION SCHEMES [J].
TERWILLIGER, P .
GRAPHS AND COMBINATORICS, 1988, 4 (01) :87-94
[7]   ROOT SYSTEMS AND THE JOHNSON AND HAMMING GRAPHS [J].
TERWILLIGER, P .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (01) :73-102
[8]   THE JOHNSON GRAPH J(D,R) IS UNIQUE IF (D,R)NOT-EQUAL(2,8) [J].
TERWILLIGER, P .
DISCRETE MATHEMATICS, 1986, 58 (02) :175-189
[9]  
Terwilliger P., 1992, J. Algebraic Comb., V1, P363, DOI 10.1023/A:1022494701663