Chemical Reaction Optimization for Feature Combination in Bio-inspired Visual Attention

被引:1
|
作者
Gan, Lu [1 ]
Duan, Haibin [1 ,2 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ, Sci & Technol Aircraft Control Lab, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
feature combination; saliency; Chemical Reaction Optimization (CRO); bio-inspired visual attention; SALIENCY;
D O I
10.1080/18756891.2015.1036220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bio-inspired visual attention models human visual system to detect the most salient part of a visual field. In the existing diversified computational models, bottom-up visual attention that works out a saliency map to indicate the conspicuity of visual stimuli in an image has gained much popularity. This paper introduces a task-driven training procedure into the basic bottom-up computational model to make bio-inspired visual attention more intelligent and appropriate for a particular visual task. Chemical Reaction Optimization (CRO) is a recently proposed evolutionary metaheuristic, simulating the dynamic interaction of molecules in a chemical reaction. In this paper, CRO algorithm is used to optimize the weight coefficients for feature combination through the training procedure. Experimental results show that CRO algorithm outperforms other evolution algorithms in bio-inspired visual attention.
引用
收藏
页码:530 / 538
页数:9
相关论文
共 50 条
  • [1] Chemical Reaction Optimization for Feature Combination in Bio-inspired Visual Attention
    Lu Gan
    Haibin Duan
    International Journal of Computational Intelligence Systems, 2015, 8 : 530 - 538
  • [2] A Bio-Inspired APS for Selective Visual Attention
    Cottini, Nicola
    Gottardi, Massimo
    Massari, Nicola
    Passerone, Roberto
    IEEE SENSORS JOURNAL, 2013, 13 (09) : 3341 - 3342
  • [3] Bio-inspired Visual Attention and Object Recognition
    Khosla, Deepak
    Moore, Christopher K.
    Huber, David
    Chelian, Suhas
    INTELLIGENT COMPUTING: THEORY AND APPLICATIONS V, 2007, 6560
  • [4] Bio-Inspired Representation Learning for Visual Attention Prediction
    Yuan, Yuan
    Ning, Hailong
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (07) : 3562 - 3575
  • [5] Predator-Prey Biogeography-Based Optimization for Bio-inspired Visual Attention
    Wang X.
    Duan H.
    International Journal of Computational Intelligence Systems, 2013, 6 (6) : 1151 - 1162
  • [6] Bio-inspired Optimization for Feature Set Dimensionality Reduction
    Elhariri, Esraa
    El-Bendary, Nashwa
    Hassanien, Aboul Ella
    2016 3RD INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL TOOLS FOR ENGINEERING APPLICATIONS (ACTEA), 2016, : 184 - 189
  • [7] Bio-inspired visual attention in agile sensing for target detection
    Liu, Jing
    Xiao, Yang
    Hao, Qi
    Ghaboosi, Kaveh
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2009, 5 (02) : 98 - 111
  • [8] A Review on Bio-inspired Optimization Method for Supervised Feature Selection
    Petwan, Montha
    Ku-Mahamud, Ku Ruhana
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) : 122 - 132
  • [9] An application of a bio-inspired visual attention model for the localization of vehicle parts
    Cretu, Ana-Maria
    Payeur, Pierre
    Laganiere, Robert
    APPLIED SOFT COMPUTING, 2015, 31 : 369 - 380
  • [10] Special Feature on Bio-Inspired Robotics
    Fukuda, Toshio
    Chen, Fei
    Shi, Qing
    APPLIED SCIENCES-BASEL, 2018, 8 (05):