High-Temperature Stable Zirconia Particles Doped with Yttrium, Lanthanum, and Gadolinium

被引:21
作者
Leib, Elisabeth W. [1 ]
Pasquarelli, Robert M. [2 ]
Blankenburg, Malte [3 ]
Mueller, Martin [3 ]
Schreyer, Andreas [3 ]
Janssen, Rolf [2 ]
Weller, Horst [1 ]
Vossmeyer, Tobias [1 ]
机构
[1] Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany
[2] Hamburg Univ Technol, Inst Adv Ceram, Denickestr 15, D-21073 Hamburg, Germany
[3] Helmholtz Zentrum Geesthacht, Inst Mat Res, Max Planck Str 1, D-21502 Geesthacht, Germany
关键词
gadolinium; lanthanum; microparticle; YSZ; zirconia; THERMAL BARRIER COATINGS; STABILIZED ZIRCONIA; MARTENSITIC-TRANSFORMATION; SIZE; MICROSTRUCTURE; MICROSPHERES; CONDUCTIVITY; MONODISPERSE; NUCLEATION; SYSTEMS;
D O I
10.1002/ppsc.201600069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zirconia microspheres synthesized by a wet-chemical sol-gel process are promising building blocks for various photonic applications considered for heat management and energy systems, including highly efficient reflective thermal barrier coatings and absorbers/emitters used in thermophotovoltaic systems. As previously shown, pure zirconia microparticles deteriorate at working temperatures of 1000 degrees C. While the addition of yttrium as a dopant has been shown to improve their phase stability, pronounced grain growth at temperatures of 1000 degrees C compromises the photonic structure of the assembled microspheres. Here, a new approach for the fabrication of highly stable ceramic microparticles by doping with lanthanum, gadolinium, and a combination of those with yttrium is introduced. The morphological changes of the particles are monitored by scanning electron microscopy, ex situ X-ray diffraction (XRD), and in situ high-energy XRD as a function of dopant concentration up to 1500 degrees C. While the addition of lanthanum or gadolinium has a strong grain growth attenuating effect, it alone is insufficient to avoid a destructive tetragonal-to-monoclinic phase transformation occurring after heating to >850 degrees C. However, combining lanthanum or gadolinium with yttrium leads to particles with both efficient phase stabilization and attenuated grain growth. Thus, ceramic microspheres are yielded that remain extremely stable after heating to 1200 degrees C.
引用
收藏
页码:645 / 655
页数:11
相关论文
共 50 条
[41]   HIGH-TEMPERATURE EXTRUSION BEHAVIOR OF A SUPERPLASTIC ZIRCONIA-BASED CERAMIC [J].
KELLETT, BJ ;
CARRY, C ;
MOCELLIN, A .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (07) :1922-1927
[42]   Influence of oxidation on the high-temperature mechanical properties of zirconia/nickel cermets [J].
Morales-Rodríguez, A ;
Bravo-León, A ;
Richter, G ;
Rühle, M ;
Domínguez-Rodríguez, A ;
Jiménez-Melendo, M .
SCRIPTA MATERIALIA, 2006, 54 (12) :2087-2090
[43]   Room temperature synthesis of high temperature stable lanthanum phosphate-yttria nano composite [J].
Sankar, Sasidharan ;
Raj, Athira N. ;
Jyothi, C. K. ;
Warrier, K. G. K. ;
Padmanabhan, P. V. A. .
MATERIALS RESEARCH BULLETIN, 2012, 47 (07) :1835-1837
[44]   Microstructural and high-temperature mechanical characteristics of nickel oxide/zirconia composites for solid oxide fuel cells [J].
Oliva-Ramirez, M. ;
Huaman-Mamani, F. A. ;
Jimenez-Melendo, M. .
FUEL PROCESSING TECHNOLOGY, 2012, 103 :45-50
[45]   Ultrafast high-temperature sintering of yttria-stabilized zirconia in reactive N2 atmosphere [J].
Karacasulu, Levent ;
de Beauvoir, Thomas Herisson ;
De Bona, Emanuele ;
Cassetta, Michele ;
Vakifahmetoglu, Cekdar ;
Sglavo, Vincenzo M. ;
Bortolotti, Mauro ;
Maniere, Charles ;
Estournes, Claude ;
Biesuz, Mattia .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (02)
[46]   Thermodynamics of high-temperature aluminum, zirconium, and yttrium hydroxide and oxyhydroxide vapor species [J].
Bauschlicher, Charles W., Jr. ;
Bodenschatz, Cameron J. ;
Myers, Dwight L. ;
Jacobson, Nathan S. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (10) :5870-5880
[47]   Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal High-Temperature Stable Model Catalysts [J].
Chen, Chen ;
Nan, Caiyun ;
Wang, Dingsheng ;
Su, Qiao ;
Duan, Haohong ;
Liu, Xiangwen ;
Zhang, Lesheng ;
Chu, Deren ;
Song, Weiguo ;
Peng, Qing ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (16) :3725-3729
[48]   Microstructure and Phase Composition of Yttria-Stabilized Zirconia Nanofibers Prepared by High-Temperature Calcination of Electrospun Zirconium Acetylacetonate/Yttrium Nitrate/Polyacrylonitrile Fibers [J].
Rodaev, Vyacheslav V. ;
Razlivalova, Svetlana S. ;
Tyurin, Alexander, I ;
Zhigachev, Andrey O. ;
Golovin, Yuri, I .
FIBERS, 2019, 7 (10)
[49]   Flexural strength of high yttrium oxide-doped monochrome and multilayered fully stabilized zirconia upon various sintered cooling rates [J].
Uasuwan, Pithiwat ;
Juntavee, Niwut ;
Juntavee, Apa .
JOURNAL OF PROSTHODONTICS-IMPLANT ESTHETIC AND RECONSTRUCTIVE DENTISTRY, 2023, 32 (06) :E118-E128
[50]   High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode [J].
Lu, GY ;
Miura, N ;
Yamazoe, N .
SENSORS AND ACTUATORS B-CHEMICAL, 1996, 35 (1-3) :130-135