Parabolic Kazhdan-Lusztig R-polynomials for Hermitian symmetric pairs

被引:2
作者
Brenti, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
Coxeter groups; Kazhdan-Lusztig theory; Hermitian symmetric pairs;
D O I
10.1016/j.jalgebra.2007.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give explicit combinatorial product formulas for the parabolic Kazhdan-Lusztig R-polynomials of Hermitian symmetric pairs. Our results imply that all the roots of these polynomials are (either zero or) roots of unity, and complete those in [F. Brenti, Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions, Pacific J. Math. 207 (2002) 257-286] on Hermitian symmetric pairs of type A. As an application of our results, we derive explicit combinatorial product formulas for certain sums and alternating sums of ordinary Kazhdan-Lusztig R-polynomials. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:412 / 429
页数:18
相关论文
共 19 条
[1]  
BJORNER A, 1992, COMMUNICATION
[3]   Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions [J].
Brenti, F .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (02) :257-286
[4]  
BRENTI F, T AM MATH SOC
[5]   THE KAZHDAN-LUSZTIG CONJECTURE FOR GENERALIZED VERMA MODULES [J].
CASIAN, LG ;
COLLINGWOOD, DH .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (04) :581-600
[6]   DUALITY IN PARABOLIC SET UP FOR QUESTIONS IN KAZHDAN-LUSZTIG THEORY [J].
DEODHAR, VV .
JOURNAL OF ALGEBRA, 1991, 142 (01) :201-209
[8]   A combinatorial formula for Macdonald polynomials [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :735-761
[9]   A combinatorial formula for the character of the diagonal convariants [J].
Haglund, J ;
Haiman, M ;
Loehr, N ;
Remmel, JB ;
Ulyanov, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (02) :195-232
[10]  
Humphreys J.E., 1990, CAMBRIDGE STUD ADV M, V29