Deformations of the Lie algebra o(5) in characteristics 3 and 2

被引:10
作者
Bouarroudj, S. [1 ]
Lebedev, A. V. [2 ]
Wagemann, F. [3 ]
机构
[1] United Arab Emirates Univ, Al Ain, U Arab Emirates
[2] Nizhnii Novgorod State Univ, Nizhnii Novgorod, Russia
[3] Univ Nantes, F-44035 Nantes, France
关键词
finite-dimensional simple modular Lie algebra; Brown algebra; infinitesimal deformation; global deformation; Cartan matrix; Jacobi identity; Massey bracket; Maurer-Cartan equation; Chevalley basis;
D O I
10.1134/S0001434611050191
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
All finite-dimensional simple modular Lie algebras with Cartan matrix fail to have deformations, even infinitesimal ones, if the characteristic p of the ground field is equal to 0 or exceeds 3. If p = 3, then the orthogonal Lie algebra o(5) is one of two simple modular Lie algebras with Cartan matrix that do have deformations (the Brown algebras br(2; alpha) appear in this family of deformations of the 10-dimensional Lie algebras, and therefore are not listed separately); moreover, the 29-dimensional Brown algebra br(3) is the only other simple Lie algebra which has a Cartan matrix and admits a deformation. Kostrikin and Kuznetsov described the orbits (isomorphism classes) under the action of an algebraic group O(5) of automorphisms of the Lie algebra o(5) on the space H (2)(o(5); o(5)) of infinitesimal deformations and presented representatives of the isomorphism classes. We give here an explicit description of the global deformations of the Lie algebra o(5) and describe the deformations of a simple analog of this orthogonal algebra in characteristic 2. In characteristic 3, we have found the representatives of the isomorphism classes of the deformed algebras that linearly depend on the parameter.
引用
收藏
页码:777 / 791
页数:15
相关论文
共 23 条
[1]  
BILLIG YV, 1990, MAT SBORNIK, V181, P1130
[2]  
BOUARROUDJ S, ARXIVMATHRT08073054
[3]   DIVIDED POWER (CO)HOMOLOGY. PRESENTATIONS OF SIMPLE FINITE DIMENSIONAL MODULAR LIE SUPERALGEBRAS WITH CARTAN MATRIX [J].
Bouarroudj, Sofiane ;
Grozman, Pavel ;
Lebedev, Alexei ;
Leites, Dimitry .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (01) :237-278
[4]   Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix [J].
Bouarroudj, Sofiane ;
Grozman, Pavel ;
Leites, Dimitry .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[5]   An extended Freudenthal Magic Square in characteristic 3 [J].
Cunha, Isabel ;
Elduque, Alberto .
JOURNAL OF ALGEBRA, 2007, 317 (02) :471-509
[6]  
Feigin BL, 2000, ENCYL MATH SCI, V21, P125
[7]  
FIALOWSKI A, 1997, AM MATH SOC TRANSL 2, V180
[8]  
Fialowski A., 1988, NATO ASI SER C, V247, P375
[9]  
Frohardt DanielE., 1992, Nova J. Algebra Geom, V1, P339
[10]  
FUCHS D, ARXIVMATHQA9602024