WEIGHTED COMPOSITION OPERATORS BETWEEN GROWTH SPACES OF THE UPPER HALF-PLANE

被引:0
作者
Stevic, Stevo [1 ]
Sharma, Ajay K. [2 ]
机构
[1] Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
[2] Shri Mata Vaishno Devi Univ, Sch Math, Katra 182320, Jammu & Kashmir, India
关键词
Weighted composition operator; growth space; boundedness; compactness; upper half-plane; BLOCH-TYPE SPACES; GENERALIZED COMPOSITION OPERATORS; UNIT BALL; ANALYTIC-FUNCTIONS; H-INFINITY; BERGMAN SPACES; BANACH-SPACES; HARDY-SPACES; NORM; ISOMETRIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let psi be a holomorphic map of the upper half-plane Pi(+) and phi be a holomorphic self-map of Pi(+). We characterize bounded weighted composition operators acting between growth spaces of the upper half-plane. Under some conditions on phi and psi, we also characterize compact weighted composition operators between growth spaces of the upper half-plane.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 31 条
[1]   BIDUALS OF WEIGHTED BANACH-SPACES OF ANALYTIC-FUNCTIONS [J].
BIERSTEDT, KD ;
SUMMERS, WH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 54 :70-79
[2]  
Cowen C., 1995, Composition Operators on Spaces of Analytic Functions
[3]   ISOMETRIES OF HP [J].
FORELLI, F .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (04) :721-&
[4]   ISOMETRIES OF WEIGHTED BERGMAN SPACES [J].
KOLASKI, CJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (04) :910-915
[5]   Generalized composition operators on Zygmund spaces and Bloch type spaces [J].
Li, Songxiao ;
Stevic, Stevo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1282-1295
[6]   Composition operators on Hardy spaces of a half-plane [J].
Matache, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (05) :1483-1491
[7]  
Matache V., 1989, AN U TIMISOARA SM, V27, P63
[8]   Weighted composition operators on weighted Banach spaces of analytic functions [J].
Montes-Rodríguez, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :872-884
[9]  
Shapiro J. H., 1993, Composition Operators and Classical Function Theory
[10]   Hardy spaces that support no compact composition operators [J].
Shapiro, JH ;
Smith, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :62-89