On probe 2-clique graphs and probe diamond-free graphs

被引:0
作者
Bonomo, Flavia [1 ,4 ]
de Figueiredo, Celina M. H. [2 ]
Duran, Guillermo [1 ,5 ,6 ,7 ]
Grippo, Luciano N. [8 ]
Safe, Martin D. [8 ]
Szwarcfiter, Jayme L. [2 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[2] Univ Fed Rio de Janeiro, COPPE, BR-21941 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, NCE, BR-21941 Rio De Janeiro, Brazil
[4] Univ Buenos Aires, FCEN, Dept Comp, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[6] Univ Buenos Aires, FCEN, Inst Calculo, Buenos Aires, DF, Argentina
[7] Univ Chile, FCFM, Dept Ingn Ind, Santiago, Chile
[8] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Argentina
关键词
2-clique graphs; diamond-free graphs; probe graphs; RECOGNITION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a class G of graphs, probe G graphs are defined as follows. A graph G is probe G if there exists a partition of its vertices into a set of probe vertices and a stable set of nonprobe vertices in such a way that non-edges of G, whose endpoints are nonprobe vertices, can be added so that the resulting graph belongs to G. We investigate probe 2-clique graphs and probe diamond-free graphs. For probe 2-clique graphs, we present a polynomial-time recognition algorithm. Probe diamond-free graphs are characterized by minimal forbidden induced subgraphs. As a by-product, it is proved that the class of probe block graphs is the intersection between the classes of chordal graphs and probe diamond-free graphs.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 19 条
[1]   Probe threshold and probe trivially perfect graphs [J].
Bayer, Daniel ;
Le, Van Bang ;
de Ridder, H. N. .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) :4812-4822
[2]   Recognizing chordal probe graphs and cycle-bicolorable graphs [J].
Berry, Anne ;
Golumbic, Martin Charles ;
Lipshteyn, Marina .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (03) :573-591
[3]  
Brown DE, 2009, STUD CHOICE WELF, P313, DOI 10.1007/978-3-540-79128-7_18
[4]  
Chandler DB, 2006, LECT NOTES COMPUT SC, V4041, P267
[5]  
Chang GJ, 2005, LECT NOTES COMPUT SC, V3404, P521
[6]   Recognition of probe distance-hereditary graphs [J].
Chang, Maw-Shang ;
Hung, Ling-Ju ;
Rossmanith, Peter .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) :336-348
[7]   Block-graph width [J].
Chang, Maw-Shang ;
Hung, Ling-Ju ;
Kloks, Ton ;
Peng, Sheng-Lung .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (23) :2496-2502
[8]   A characterization of chain probe graphs [J].
Golumbic, Martin C. ;
Maffray, Frederic ;
Morel, Gregory .
ANNALS OF OPERATIONS RESEARCH, 2011, 188 (01) :175-183
[9]  
Golumbic Martin Charles., 2004, Annals of Discrete Mathematics, V2
[10]   Chordal probe graphs [J].
Golumbic, MC ;
Lipshteyn, M .
DISCRETE APPLIED MATHEMATICS, 2004, 143 (1-3) :221-237