High-purity and high-concentration liquid fuels through CO2 electroreduction

被引:256
作者
Zhu, Peng [1 ]
Wang, Haotian [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
OXYGEN EVOLUTION REACTION; CARBON-MONOXIDE; ELECTROCHEMICAL REDUCTION; C-2; PRODUCTS; ELECTROLYSIS; CONVERSION; COPPER; ACID; ELECTROCATALYSIS; CATALYSTS;
D O I
10.1038/s41929-021-00694-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid fuels generated from the electrochemical CO2 reduction reaction (CO2RR) are of particular interest due to their high energy densities and ease of storage and distribution. Unfortunately, they are typically formed in low concentrations and mixed with impurities due to the current limitations of traditional CO2 electrolysers as well as CO2RR catalysts. In this Perspective, we emphasize that while the declining renewable electricity price can greatly lower the formation cost of liquid fuels, the downstream purification process will add an extra layer of cost that greatly harms their economic feasibility for large-scale applications. Different strategies in reactor engineering and catalyst improvement are proposed to realize the direct and continuous generation of high-purity and high-concentration liquid fuels from CO2RR electrolysers, allowing this electrochemical route to become more competitive compared with the traditional chemical engineering industry in the future. Liquid fuels produced by electrocatalytic CO2 reduction are costly to separate from liquid electrolytes in a conventional cell. This Perspective identifies the need for novel cell designs that can directly produce high-concentration and high-purity products and discusses the progress towards this goal using porous solid electrolytes.
引用
收藏
页码:943 / 951
页数:9
相关论文
共 64 条
[1]  
[Anonymous], 2021, LEAD SUMM CLIM DAY 1
[2]  
[Anonymous], 2021, DOE ANN GOAL CUT SOL
[3]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[4]   Taming cation effects [J].
Capdevila-Cortada, Marcal .
NATURE CATALYSIS, 2019, 2 (08) :641-641
[5]   Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction [J].
Chen, Chi ;
Kotyk, Juliet F. Khosrowabadi ;
Sheehan, Stafford W. .
CHEM, 2018, 4 (11) :2571-2586
[6]   Address the "alkalinity problem'' in CO2 electrolysis with catalyst design and translation [J].
Chen, Chubai ;
Li, Yifan ;
Yang, Peidong .
JOULE, 2021, 5 (04) :737-742
[7]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[8]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[9]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[10]   Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers [J].
Endrodi, B. ;
Samu, A. ;
Kecsenovity, E. ;
Halmagyi, T. ;
Sebok, D. ;
Janaky, C. .
NATURE ENERGY, 2021, 6 (04) :439-448